5.2 Annuities

Definition 1: Annuity

A **SEQUENCE OF PAYMENTS**

Definition 2: Future Value of an Annuity

The future value S of an annuity of n payments of R dollars earning interest rate of i per period is

$$S = R \left[\frac{(1+i)^n - 1}{i} \right]$$

$i = \frac{r}{m}$

$n = m \cdot t$

Example 1

John will need $12,000 for a down payment in three years. He deposits $200 per month earning 5% per year compounded monthly. Will he have enough?

$$R = 200, \quad r = .05, \quad m = 12, \quad i = \frac{.05}{12}$$

$$S = 200 \left[\frac{(1+\frac{.05}{12})^{2.3} - 1}{\frac{.05}{12}} \right] = \frac{1614722313}{.00416667}$$

$$= 200 \left(\frac{38.753305}{.05} \right) = \frac{7750.66}{200 \times 36 = \$7200}$$

NOT ENOUGH

INTEREST EARNED

$7750.66 - 7200 = \$550.66$
Example 2

Suppose John consulted you on what he would have to save per month so he has $12,000 in three years. At an interest rate of 5% per year compounded monthly, what would he save to deposit per month?

\[S = R \left[\frac{(1+i)^n-1}{i} \right] \]

\[12000 = R \left[\frac{(1+.05/12)^{2.3} - 1}{.05/12} \right] \]

\[12000 = R \left(38.753305 \right) \]

\[\frac{12000}{38.753305} = R \]

\[\$ 309.65 = R \]

Definition 3: Present Value of an Annuity

The present value of \(P \) of an annuity consisting of \(n \) payments of \(R \) dollars each, earning interest at \(i \) per period is:

\[P = R \left[\frac{1 - (1+i)^n}{i} \right] \]
Example 3

Find the present value of an annuity consisting of 24 quarterly payments of $250 each and earning 3% per year compounded quarterly.

\[
P = 250 \left(\frac{1 - (1 + 0.03/4)^{4 \times 24}}{0.03/4} \right)
\]

\[
= 250 \left(\frac{0.164166}{0.0075} \right)
\]

\[
= 5472.29
\]

Example 4

Suppose you’re 22 years old, just graduated from college, and begin thinking of retirement. There are many options out there. Which option is better?

1. You get a job and deposit $150 per month into an account earning 5% per year compounded monthly for 7 years. You leave this money alone until the age of 65.

2. It’s too hard to save when you’re 22. You wait until you’re 45 years old and then deposit $150 per month at 5% per year compounded monthly. How much will you have when you’re 65 years old?

1) After 7 years: \(S = 150 \left(\frac{(1 + 0.05/12)^{12 \times 7} - 1}{0.05/12} \right) = $5,049.30 \)

Let it sit for 36 years → use \(P(1+r)^n \)

\[
150 \times 12 \times 7 = $12,600
\]
\[
(2) \quad S = 150 \left[\frac{(1 + 0.05/12)^{12 \cdot 20} - 1}{0.05/12} \right] = \$61,655.05
\]

Spent $150 \times 12 \times 20 = \36000
Example 5

Brian payed a down payment of $12,000 towards a new car. He secured a loan for 60 months at an interest rate of 1.99% per year compounded monthly. His monthly payments are $232 per month. How much was the car worth?

\[
\text{CAR PRICE} = \text{PRESENT VALUE OF \ LOAN} + \text{DOWN PAYMENT} \downarrow \uparrow$12,000
\]

\[n = 60 \quad \gamma = 0.0199 \quad m = 12 \quad R = \$232\]

\[
P = R \left(\frac{1 - (1 + \frac{i}{m})^{-n}}{\frac{i}{m}} \right) \quad i = \frac{\gamma}{m}
\]

\[
= 232 \left[\frac{1 - (1 + \frac{0.0199}{12})^{-125}}{(0.0199/12)} \right]
\]

\[
= 232 \left[\frac{0.09463544}{0.00165833} \right]
\]

\[
= 232 \left[57.0667117 \right]
\]

\[
\text{LOAN AMOUNT} = 13,239.48 \quad \text{CAR PRICE} = 13,239.48 + 12,000 = \$25,239.48
\]