3.1 Graphing Linear Equalities

Definition 1: Two Forms of a Linear Equation

\[ax + by = c \]
\[y = mx + b \]

Definition 2: Linear Inequalities

\[ax + by \leq c \]
\[ax + by \geq c \]

Definition 3: Boundary and Solution Set

[Diagram showing a linear inequality with boundary line and solution set]
Steps 1

1. Draw the line by replacing the inequality with an equals
2. Pick a test point on one side of the line
3. If the inequality is satisfied, shade that side
4. If the inequality is not satisfied, shade the other side

Example 1

Graph $2x - 3y \geq 6$

\[2x-3y = 6\]

Example 2

Graph $x \geq -1$ and $0 \leq y \leq 2$
Steps 2: Graphing a System of Linear Inequalities

1. Graph the two linear inequalities
2. The solution set, S, is the region where the inequalities are both TRUE.

Example 3

Graph the solution set for

\[x - 2y \leq 1 \]
\[3x + 2y \geq 6 \]
Example 4

Graph the solution set for

\[x + y \leq 4 \]
\[2x + y \leq 6 \]
\[2x - y \geq -1 \]
\[x \geq 0 , \ y \geq 0 \]

STAY IN 1ST QUADRANT

Definition 4

1. Bounded: BOUNDED IF IT CAN BE ENCLOSED BY A CIRCLE
2. Unbounded: IF IT CANNOT BE ENCLOSED
Describe the shaded region

Either

\[
\begin{align*}
 y \geq 2x \\
 2 \geq 2(0) \\
 2 \geq 0
\end{align*}
\]

or

\[
\begin{align*}
 y \leq 2x \\
 2 \leq 2(0) \\
 2 \leq 0
\end{align*}
\]