1.2 Lines and Slopes

Definition 1: Slope of a Line

If \((x_1, y_1)\) and \((x_2, y_2)\) are two distinct points, then the slope \(m\) is

\[
m = \frac{y_2 - y_1}{x_2 - x_1}
\]

Definition 2: Different Forms for a Line

Point-Slope Form

NEED (1) POINT (2) SLOPE

\[y - y_1 = m(x - x_1)\]

Slope-Intercept Form

NEED: (1) SLOPE (2) Y-INT \((0, b)\)

\[y = mx + b\]
Example 1
Find the slope of the line that passes through the points \((-2, 2)\) and \((3, -1)\), the equation of the line, and then sketch.

Slope: \[m = \frac{-1 - 2}{3 - (-2)} = \frac{-3}{5} \]

Point-Slope: \[y - y_1 = m(x - x_1) \]
\[y - 2 = \frac{-3}{5}(x + 2) \]
\[y - 2 = \frac{-3}{5}x - \frac{6}{5} + 2 \]

Slope-Intercept \[y = \frac{-3}{5}x + \frac{4}{5} \]
Definition 3: Perpendicular and Parallel Lines

Suppose you have two lines L_1 and L_2 with slopes m_1 and m_2.

- **Parallel**

 \[\begin{align*}
 L_1 & \parallel L_2 \\
 m_1 &= m_2
 \end{align*} \]

- **Perpendicular**

 \[\begin{align*}
 L_1 & \perp L_2 \\
 m_1 &= -\frac{1}{m_2}
 \end{align*} \]

Example 2

Find an equation of the line that passes through the point $(-1, 3)$ that is perpendicular to $y = -\frac{2}{3}x + 4$.

NEED

1. **Point**: $(-1, 3)$
2. **Slope**: $m = \frac{3}{2}$

Point-Slope

\[y - 3 = \frac{3}{2} (x - (-1)) \]
\[y - 3 = \frac{3}{2} x + \frac{3}{2} \]
\[y = \frac{3}{2} x + \frac{9}{2} \]
Definition 4: General Equation of a Line

\[Ax + By = C \]

OR

\[A x + B y + C = 0 \]

Example 3

Consider the line \(2x - 5y + 10 = 0 \).

\[\rightarrow 2x - 5y = -10 \]

1. Find the slope

\[m = \frac{-A}{B} = \frac{-2}{-5} = \frac{2}{5} \]

\[-5y = -2x - 10 \]

\[y = \frac{2}{5} x + 2 \]

2. Find the \(x \) and \(y \) intercepts.

\[y \text{-INT: LET } x = 0 \rightarrow 2(0) - 5y = -10 \]

\[\Rightarrow -5y = -10 \]

\[y = 2 \]

\[(0, 2) \]

\[x \text{-INT: LET } y = 0 \]

\[2x - 5(0) = -10 \]

\[2x = -10 \]

\[x = -5 \]

\[(-5, 0) \]

3. Sketch the line