16.4 Green’s Theorem

Theorem 1

\(\int_C \mathbf{F} \cdot dr \) is independent of path in \(D \) if and only if

\[\int_C \mathbf{F} \cdot dr = 0 \]

for every closed path \(C \) in \(D \).

In the last section we found out that if \(\mathbf{F} \) was a conservative vector field then we had a nice way to integrate it over a curve. As long as the initial and terminal points were the same, the integral did not depend on the path chosen. But what happens if \(\mathbf{F} \) is not conservative? In 16.2 we needed to evaluate the integral the hard way

\[\int_C \mathbf{F} \cdot dr = \int_a^b \mathbf{F}(r(t)) \cdot r'(t) \, dt \]

Fortunately, in this section we can evaluate the integral \(\int_C \mathbf{F} \cdot dr \) easily even if \(\mathbf{F} \) is not conservative. But there are conditions on the domain and path.

Theorem 2: Green’s Theorem

Let \(C \) be a positively oriented, piecewise-smooth, simple closed curve in the plane and let \(D \) be the region bounded by \(C \). If \(P \) and \(Q \) have continuous partial derivatives on an open region that contains \(D \), then

\[\int_C P(x, y) \, dx + Q(x, y) \, dy = \int \int_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA \]

The line integral can be converted into a double integral from chapter 15.
Example 1

Evaluate \(\int_C x^4 \, dx + xy \, dy \) where \(C \) is the triangle formed by the points \((0, 0), (1, 0)\) and \((1, 0)\).

1. Let’s look at the path \(C \) and the region \(D \) formed by the triangle.

![Diagram of the triangle](image)

2. Let’s solve this using the direct method from 16.2 by integrating over the curves \(C_1 \), \(C_2 \), and \(C_3 \) separately.

(a) Over \(C_1 \)

i. \(r(t) = (x(t), y(t)) = (0, 1 - t) \), \(0 \leq x \leq 1 \)

ii. \(r'(t) = (x'(t), y'(t)) = (0, -1) \)

iii. Formulas Needed:

\[
\int_C P(x, y) \, dx = \int_a^b P(x(t), y(t))x'(t) \, dt
\]

\[
\int_C Q(x, y) \, dy = \int_a^b Q(x(t), y(t))y'(t) \, dt
\]

iv. Formula: \(\int_{C_1} \mathbf{F} \cdot dr = \int_a^b \mathbf{F}(r(t)) \cdot r'(t) \, dt = \int_a^b P(x, y) \, dx + Q(x, y) \, dy \)
\[
\int_{C_1} x^4 \, dx + xy \, dy = \int_0^1 (0)^4(0 \, dt) + 0(1 - t)(-1 \, dt) \\
= \int_0^1 0 \, dt \\
= 0
\]

(b) Over \(C_2\)

i. \(r(t) = \langle x(t), y(t) \rangle = \langle t, 0 \rangle, \ 0 \leq t \leq 1\)

ii. \(r'(t) = \langle x'(t), y'(t) \rangle = \langle 1, 0 \rangle\)

\[
\int_{C_2} x^4 \, dx + xy \, dy = \int_0^1 t^4(1 \, dt) + t(0)(0 \, dt) \\
= \int_0^1 t^4 \, dt \\
= \frac{1}{5} t^5 \bigg|_0^1 \\
= \frac{1}{5}
\]

(c) Over \(C_3\)

i. \(r(t) = \langle x(t), y(t) \rangle = \langle 1 - t, t \rangle\)

ii. \(r'(t) = \langle x'(t), y'(t) \rangle = \langle -1, 1 \rangle\)

\[
\int_{C_3} x^4 \, dx + xy \, dy = \int_0^1 (1 - t)^4(-1 \, dt) + (1 - t)t(1 \, dt) \\
= \int_0^1 -(1 - t)^4 + t - t^2 \, dt \\
= \frac{1}{5} (1 - t)^5 + \frac{1}{2} t^2 - \frac{1}{3} t^3 \bigg|_0^1 \\
= -\frac{1}{30}
\]

(d) \(\int_{C_1+C_2+C_3} x^4 \, dx + xy \, dy = 0 + \frac{1}{5} - \frac{1}{30} = \frac{1}{6}\)
3. Let’s try with Green’s Theorem

(a) Let \(P = x^4 \) and \(\frac{\partial P}{\partial y} = 0 \)

(b) Let \(Q = xy \) and \(\frac{\partial Q}{\partial x} = y \)

(c) \(D = \{(x, y) \mid 0 \leq x \leq 1, \ 0 \leq y \leq 1 - x\} \)

\[
\int_C x^4 \, dx + xy \, dy = \int \int_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA
\]
\[
= \int \int_D y \, dA
\]
\[
= \int_0^1 \int_0^{1-x} y \, dy \, dx
\]
\[
= \int_0^1 \left[\frac{1}{2} y^2 \right]^{1-x}_0 \, dx
\]
\[
= \int_0^1 \frac{1}{2} (1 - x)^2 \, dx
\]
\[
= \frac{1}{6} (1 - x)^3 \bigg|_0^1
\]
\[
= \frac{1}{6}
\]

Example 2

Use Green’s Theorem to evaluate \(\int_C (3y - e^{\sin x}) \, dx + (7x + \sqrt{y^4 + 1}) \, dy \), where \(C \) is the circle \(x^2 + y^2 = 9.1 \)

1. Let \(P = 3y - e^{\sin x} \) and \(\frac{\partial P}{\partial y} = 3 \)

2. Let \(Q = 7x + \sqrt{y^4 + 1} \) and \(\frac{\partial Q}{\partial x} = 7 \)
3. Sketch D

\[D = \{(r, \theta) \mid 0 \leq r \leq 3, \ 0 \leq \theta \leq 2\pi\} \]

4. The region \(D \) is best described in polar. So we need to change the integral to polar using

\[
x = r \cos \theta
\]
\[
y = r \sin \theta
\]
\[
x^2 + y^2 = r^2
\]

\[
\int_C (3y - e^{\sin x}) \, dx + (7x + \sqrt{y^4 + 1}) \, dy = \int \int_D (7 - 3) \, dA
\]
\[
= \int \int_D 4 \, dA
\]
\[
= \int_0^{2\pi} \int_0^3 4r \, dr \, d\theta
\]
\[
= \int_0^{2\pi} \left[2r^2 \right]_0^3 \, d\theta
\]
\[
= \int_0^{2\pi} 18 \, d\theta
\]
\[
= 18\theta \bigg|_0^{2\pi}
\]
\[
= 36\pi
\]
Example 3

Use Green’s Theorem to evaluate \[\int_C y^2 \, dx + 3xy \, dy \] where \(C \) is the boundary of the semicircular region \(D \) is the upper half plane between \(x^2 + y^2 = 1 \) and \(x^2 + y^2 = 4 \).

1. \(P = y^2 \) and \(\frac{\partial P}{\partial y} = 2y \)

2. \(Q = 3xy \) and \(\frac{\partial Q}{\partial x} = 3y \)

3. Sketch \(D \)

\[
D = \{ (r, \theta) \mid 1 \leq r \leq 2, \ 0 \leq \theta \leq \pi \}
\]

The region is best described in polar.

\[
\int_C y^2 \, dx + 3xy \, dy = \int \int_D (3y - 2y) \, dA \\
= \int \int_D y \, dA \\
= \int_0^\pi \int_1^2 r \sin(\theta) \cdot r \, dr \, d\theta \\
= \int_0^\pi \sin \theta \, d\theta \cdot \int_1^2 r^2 \, dr \\
= -\cos \theta \bigg|_0^\pi + \frac{1}{3} r^3 \bigg|_1^2 \\
= 2 \cdot \frac{7}{3} \\
= \frac{14}{3}
\]
Example 4

Use Green's Theorem to evaluate \(\int_C x^2y^2 \, dx + xy \, dy \) where \(C \) is the arc of \(y = x^2 \) from \((0,0)\) to \((1,1)\), line segments from \((1,1)\) to \((0,1)\) and from \((0,1)\) to \((0,0)\).

1. \(P = x^2y^2 \) and \(\frac{\partial P}{\partial y} = 2x^2y \)

2. \(Q = xy \) and \(\frac{\partial Q}{\partial x} = y \)

3. Sketch \(D \)

\[
D = \{(x, y) \mid 0 \leq x \leq 1, \ x^2 \leq y \leq 1\}
\]

\[
\int_C x^2y^2 \, dx + xy \, dy = \int \int_D y - 2x^2y \, dA
\]

\[
= \int_0^1 \int_{x^2}^1 y - 2x^2y \, dy \, dx
\]

\[
= \int_0^1 \left[\frac{1}{2}y^2 - x^2y \right]_{x^2}^1 \, dx
\]

\[
= \int_0^1 x^6 - \frac{1}{2}x^4 - x^2 + \frac{1}{2} \, dx
\]

\[
= \frac{1}{7}x^7 - \frac{1}{10}x^5 - \frac{1}{3}x^3 + \frac{1}{2}x^2 \Bigg|_0^1
\]

\[
= \frac{22}{105}
\]