15.7 Triple Integrals in Cylindrical Coordinates

In 2D this would be called Polar Coordinates. When extending it to 3D, by adding the z-axis, we represent points (x, y, z) as (r, θ, z).

Definition 1: Convert Coordinates

Cylindrical to Rectangular Coordinates

\[x = r \cos(\theta), \quad y = r \sin(\theta), \quad z = z \]

Rectangular to Cylindrical Coordinates

\[r^2 = x^2 + y^2, \quad \tan(\theta) = \frac{y}{x}, \quad z = z \]

Example 1

Plot \(\left(2, \frac{2\pi}{3}, 1 \right) \) and find the rectangular coordinates.
Example 2

Change to Cylindrical Coordinates: \((3, -3, -2)\)

\[
r^2 = (3)^2 + (-3)^2 = 18 \Rightarrow r = \sqrt{18}
\]
\[
\tan(\theta) = \frac{3}{-3} = -1 \Rightarrow \theta = -\pi/4
\]
\[
z = -2
\]
Definition 2: Triple Integrals in Cylindrical Coordinates

\[E = \begin{cases}
\alpha \leq \theta \leq \beta \\
 r_1(\theta) \leq r \leq r_2(\theta) \\
 u_1(r \cos \theta, r \sin \theta) \leq z \leq u_2(r \cos \theta, r \sin \theta)
\end{cases} \]

\[
\int \int \int_E f(x, y, z) \, dV = \int_\alpha^\beta \int_{r_1(\theta)}^{r_2(\theta)} \int_{u_1(r \cos \theta, r \sin \theta)}^{u_2(r \cos \theta, r \sin \theta)} f(r \cos \theta, r \sin \theta) r \, dz \, dr \, d\theta
\]

Example 3

Find the volume of the potion of the surface that lies below \(z = 1 - x^2 - y^2 \) and above the \(xy \)-plane.

Let’s take a look at the graph and the projection of \(E \) onto the \(xy \) plane.
We are trying to evaluate \(\int \int \int_E 1 \, dV \)

1. Let’s start with trying to write \(E \)

\[
E = \begin{cases}
0 \leq \theta \leq 2\pi \\
0 \leq r \leq 1 \\
0 \leq z \leq 1 - x^2 - y^2
\end{cases}
\]

Notice how the inequalities involve \(x \) and \(y \). If we want to convert this triple integral to cylindrical coordinates we need to rewrite \(x \) and \(y \) using the conversion formulas from above.

\[
1 - x^2 - y^2 = 1 - (x^2 + y^2) = 1 - r^2
\]

2. Now express \(E \) as

\[
E = \begin{cases}
0 \leq \theta \leq 2\pi \\
0 \leq r \leq 1 \\
0 \leq z \leq 1 - r^2
\end{cases}
\]

3. Set up the integral. Recall that if you’re looking for th volume then \(f(x, y, z) = 1 \)

\[
\int_0^{2\pi} \int_0^1 \int_{1-r^2}^{1-r^2} 1 \, r \, dz \, dr \, d\theta
\]
4. Evaluate the inside integral
\[\int_0^{1-r^2} rz \, dz = r(1 - r^2) = r - r^3 \]
\[\int_0^{2\pi} \int_0^1 r - r^3 \, dr \, d\theta \]

5. Evaluate the inside integral
\[\int_0^1 r - r^3 \, dr = \frac{1}{2}r^2 - \frac{1}{4}r^4 \bigg|_0^1 = \frac{1}{4} \]
\[\int_0^{2\pi} \frac{1}{4} \, d\theta \]

6. Evaluate the last integral
\[\int_0^{2\pi} \frac{1}{4} \, d\theta = \frac{1}{4} \theta \bigg|_0^{2\pi} = \frac{\pi}{2} \]

Example 4

Setup \(\int \int \int_E x + y + z \, dV \) where \(E \) is the solid in the first octant that lies under \(z = 4 - x^2 - y^2 \) as a triple integral in cylindrical coordinates.

If you want to project the surface onto the \(xy \) plane, you get

\[D = \begin{cases}
0 \leq \theta \leq \pi/2 \\
0 \leq r \leq 2
\end{cases} \]
1. Now we can express E as

$$E = \begin{cases}
0 \leq \theta \leq \pi/2 \\
0 \leq r \leq 2 \\
0 \leq z \leq 4 - x^2 - y^2
\end{cases}$$

2. Convert to Cylindrical Coordinates

$$E = \begin{cases}
0 \leq \theta \leq \pi/2 \\
0 \leq r \leq 2 \\
0 \leq z \leq 4 - r^2
\end{cases}$$

3. The integral can be written as

$$\int_0^{\pi/2} \int_0^2 \int_0^{4-r^2} (r \cos \theta + r \sin \theta + z) r \, dz \, dr \, d\theta$$

$$\int_0^{\pi/2} \int_0^2 \int_0^{4-r^2} r^2 \cos \theta + r^2 \sin \theta + zr \, dz \, dr \, d\theta$$

Example 5

Sketch the region E represented by the integral

$$\int \int \int_E x^2 + y^2 \, dV = \int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{4-x^2}} x^2 + y^2 \, dz \, dy \, dx$$

Then Evaluate the integral in cylindrical coordinates.

The projection of E onto the xy plane will be

$$D = \begin{cases}
-2 \leq x \leq 2 \\
-\sqrt{4-x^2} \leq y \leq \sqrt{4-x^2}
\end{cases}$$
We can rewrite the projection region D in cylindrical coordinates by

$$D = \begin{cases} 0 \leq \theta \leq 2\pi \\ 0 \leq r \leq 2 \end{cases}$$

Adding in z the region E is expressed as

$$E = \begin{cases} 0 \leq \theta \leq 2\pi \\ 0 \leq r \leq 2 \\ \sqrt{x^2 + y^2} \leq z \leq 2 \end{cases}$$

$$\int_0^{2\pi} \int_0^2 \int_r^{\sqrt{x^2 + y^2}} r^2 \, dz \, dr \, d\theta$$

$$= \int_0^{2\pi} \int_0^2 r^3 \, dz \, dr \, d\theta$$

1. Evaluate inside integral

$$\int_r^2 r^3 \, dz = r^3 \bigg|_r^2 = 2r^3 - r^4$$

$$\int_0^{2\pi} \int_0^2 2r^3 - r^4 \, dr$$

2. Evaluate the inside integral

$$\int_0^2 2r^3 - r^4 \, dr = \frac{1}{2}r^4 - \frac{1}{5}r^5 \bigg|_0^2 = \frac{8}{5}$$

$$\int_0^{2\pi} \frac{8}{5} \, d\theta$$

$$= \frac{8}{5} \bigg|_0^{2\pi} = \frac{16\pi}{5}$$

7