Arc Length

Recall the length of a line segment:

\[d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]

But what about something like this? How can we find how long this curve is?
1. The idea is to divide the interval into \(n \) equal subintervals each with width \(\Delta x \).

2. Find the length between the lines connecting the \(y \)-values \((P_1P_2, P_2P_3, \text{etc.})\).

3. The length of the curve in each subinterval is approximately the length of each line segment.

4. Add all those lengths together to get an approximate arc length.

\[
L \approx \sum_{i=1}^{n} P_{i-1}P_i
\]

5. The larger \(n \) gets, the better the approximation.

\[
L = \lim_{n \to \infty} \sum_{i=1}^{n} P_{i-1}P_i
\]
So how do we go from a limit to using an integral to calculate arc length.

Consider the following picture that contains the length of one segment.

1. Find the length again

\[d = \sqrt{(x_i - x_{i-1})^2 + (y_i - y_{i-1})^2} = \sqrt{\Delta x_i^2 + \Delta y_i^2} \]

2. By the Mean Value Theorem, we know the interval \([x_{i-1}, x_i]\), there is a point \(x_i^*\) such that

\[f(x_i) - f(x_{i-1}) = f'(x_i^*)(x_i - x_{i-1}) \]
\[\Delta y_i = f'(x_i^*)\Delta x_i \]

We can now write the length of the line segment as

\[
P_{i-1}P_i = \sqrt{(x_i - x_{i-1})^2 + (y_i - y_{i-1})^2}
= \sqrt{\Delta x_i^2 + \Delta y_i^2}
= \sqrt{\Delta x_i^2 + [f'(x_i^*)]^2 \Delta x_i^2}
= \sqrt{\Delta x_i^2 (1 + [f'(x_i^*)]^2)}
= \sqrt{1 + [f'(x_i^*)]^2} \cdot \Delta x_i
\]
3. The total length,

\[L = \lim_{n \to \infty} \sum_{i=0}^{n} \sqrt{1 + f'(x_i)^2} \cdot \Delta x \]

which we rewrite as

\[L = \int_{a}^{b} \sqrt{1 + f'(x)^2} \, dx \]

or

\[L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \]

If you’re given a function in terms of \(y \), \(x = h(y) \), the formula would be

Formula 1: Arc Length Formula

\[
L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \quad \text{if in terms of } x \\
L = \int_{c}^{d} \sqrt{1 + \left(\frac{dx}{dy}\right)^2} \, dy \quad \text{if in terms of } y
\]

Example 1

Find the length of the arc of the semicubical parabola \(y^2 = x^3 \) between the points (1,1) and (4,8).

1. To graph it, rewrite it as \(y = x^{3/2} \).
2. Find \(\frac{dy}{dx} \)

\[
\frac{dy}{dx} = \frac{2}{3} x^{1/2}
\]

3. Use the Arc Length Formula

\[
L = \int_{1}^{4} \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \, dx
\]

\[
= \int_{1}^{4} \sqrt{1 + \frac{9}{4} x} \, dx
\]

We need to use substitution to finish integrating.

(a) Let \(u = 1 + \frac{9}{4} x \)

(b) \(du = \frac{9}{4} x \rightarrow \frac{4}{9} du = dx \)

(c) Change the limits of integration

If \(x = 1, u = 13/4 \)

If \(x = 4, u = 10 \)

(d) Integrate

\[
\int_{1}^{4} \sqrt{1 + \frac{9}{4} x} \, dx = \frac{4}{9} \int_{13/4}^{10} u^{1/2} \, du
\]

\[
= \frac{4}{9} \cdot \frac{2}{3} u^{3/2} \bigg|_{13/4}^{10}
\]

\[
= 7.63371
\]

Example 2

Find the exact length of the curve \(x = \frac{1}{3} \sqrt{y(y - 3)} \) over the interval \([1,9]\).
1. This is a function in terms of y. In order to graph this, you’ll have to use the techniques from Chapter 1.

2. The graph

3. Find $\frac{dx}{dy}$

\[
\frac{dx}{dy} = \frac{1}{3} y^{1/2} \cdot (1) + (y - 3) \cdot \frac{1}{6} y^{-1/2} \\
= \frac{1}{3} y^{1/2} + \frac{1}{6 \sqrt{y}} (y - 3) \\
= \frac{1}{6 \sqrt{y}} (2y + (y - 3)) \\
= \frac{1}{6 \sqrt{y}} (3y - 3) \\
= \frac{(y - 1)}{2 \sqrt{y}}
\]
4. Find \(1 + \left(\frac{dx}{dy} \right)^2\)

\[
1 + \left(\frac{y - 1}{2\sqrt{y}} \right)^2 = 1 + \frac{(y - 1)^2}{4y} \\
= \frac{4y + y^2 - 2y + 1}{4y} \\
= \frac{y^2 + 2y + 1}{4y} \\
= \frac{(y + 1)^2}{4y}
\]

5. Set up the integral

\[
L = \int_1^9 \sqrt{1 + \left(\frac{y - 3}{2\sqrt{y}} \right)^2} \, dy \\
= \int_1^9 \sqrt{\frac{(y + 1)^2}{4y}} \, dy \\
= \int_1^9 \frac{y + 1}{2y^{1/2}} \, dy \\
= \int_1^9 \frac{1}{2} y^{1/2} + \frac{1}{2} y^{-1/2} \, dy \\
= \frac{1}{3} y^{3/2} + y^{1/2} \bigg|_1^9 \\
= (9 + 3) - \left(\frac{1}{3} + 1 \right) \\
= 10.6667
\]