Math 210 finite mathematics

BRIAN VEITCH • FALL 2016 • NORTHERN ILLINOIS UNIVERSITY

3.3 Linear Programming: Graphical Solutions

Example 1 Consider the system of linear inequalities from our 3.2 - Example 1 word problem. Maximize: P = 50x + 54ySubject to: $3x + 2y \leq 16$ $x + 2y \leq 8$ $x \geq 0, \quad y \geq 0$

1. Sketch the feasible set

2. Goal:

Theorem 1: Corner Point Theorem

- 1. If a linear programming program has a solution, it must occur at a corner point of the feasible set.
- 2. If the objective function P is optimized at two adjacent corners of the feasible set, then any point on the line connecting those points is considered an optimal solution.

Steps 1	
1.	
2.	
3.	
4.	
5.	

Brian has a small carpentry business that employs two carpenters and a finisher. They sell two types of tables: standard and amazing. Each standard table will result in a profit of \$50, and each amazing table results in a profit of \$54. A standard table requires 3 hours of carpentry and 1 hour of finishing. An amazing table requires 2 hours of carpentry and 2 hours of finishing. Each day there are 16 hours available for carpentry and 8 hours for finishing. How many tables of each type should be made to maximize profit?

A finance company has \$120 million to invest in stocks S and T. Since stock T is riskier, management stipulated that the total amount invested in stock S be at least five times more than the amount invested in stock T. Stock T is expected to return an average of 20% and stock S an average of 12%. Determine the total amount that should be invested in each stock to maximize returns.

Brian uses two types of fertilizers. A 50-lb bag of Fertilizer A contains 8 lbs of nitrogen, 2 lbs of phosphorus, and 4 lbs of potassium. A 50-lb bag of Fertilizer B contains 5 lbs of nitrogen, 5 lbs of phosphorus, and 5 lbs of potassium. The minimum requirements for a field are 440 lbs of nitrogen, 260 lbs of phosphorus, and 360 lbs of potassium. If a 50-lb bag of A costs \$30 and a 50-lb bag of B costs \$20, find the amount of each type Brian should use to minimize cost while still meeting his requirements.

Minimize:	P =	= 2x + 2y
2x + 3y	\leq	30
y - x	\leq	5
x + y	\geq	5
x	\leq	10
$x \ge 0,$		$y \ge 0$