Math 210 finite Mathematics

Brian Veitch • Fall 2016 • Northern Illinois University

2.2 System of Linear Equations - Unique Solutions

System of Equations

Augmented Matrix

$$3x - 2y = 4$$
$$2x + 4y = 8$$

$$\begin{bmatrix} 2 & 4 & 6 & 22 \\ 2 & 8 & 5 & 27 \\ -1 & 1 & 2 & 2 \end{bmatrix}$$

$$x + 2y + 3z = 11$$

$$2y - 4z = -6$$

$$-x + y + 2z = 2$$

$$x + 0y + 0z = 17$$
 $\rightarrow x = 17$
 $0x + 1y + 0z = -3$ $\rightarrow y = -3$
 $0x + 0y + 1z = 13$ $\rightarrow z = 13$

$$\begin{bmatrix} 1 & 0 & 0 & 17 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 13 \end{bmatrix}$$

Definition 1: Row-Reduced Form of a Matrix

1. Each row consisting entirely of zeros must lie below rows having non-zero entries

2. The first non-zero entry in each row must be 1 (called a leading 1)

3. In any two successive (nonzero) rows, the leading 1 in the lower row lies to the right of the leading one in the upper row.

4. If a column contains a leading 1, then the other entries in that column must be zeros

Example 1

Determine which of the following matrices are in row-reduced form.

$$2. \begin{bmatrix} 0 & 1 & 0 & 4 \\ 1 & 0 & 0 & -3 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

2. $\begin{bmatrix} 0 & 1 & 0 & | & 4 \\ 1 & 0 & 0 & | & -3 \\ 0 & 0 & 1 & | & 0 \end{bmatrix}$ NO FAILS #3

$$3. \begin{bmatrix} 1 & 2 & 0 & | & 4 \\ 0 & 0 & 1 & | & -3 \\ 0 & 0 & 2 & | & 7 \end{bmatrix}$$

3. $\begin{bmatrix} 1 & 2 & 0 & | & 4 \\ 0 & 0 & 1 & | & -3 \\ 0 & 0 & 2 & | & 7 \end{bmatrix}$ NO FAILS # Z

Definition 2: Gauss-Jordan Method

OPELATIONS

- (1) SWAP ROWS IN THE MATRIX RICHR
- (2) MULTIPLY ANY ROW BY A NON ZERO NUMBER

 CR, -> R,
- (3) REPLACE A ROW BY THE SUM OF THAT ROW AND A CONSTANT MULTIPLE OF ANOTHER ROW

 E_{X} , $R_1 + 3R_2 \rightarrow R_1$

GOAL: TURN AVEMENTED MATRIX

INTO [1 0 0 | a]

0 0 0 1 C

SOLUTION: X=a, y=b, Z=C

Definition 3: Unit Column

A COLUMN WITH A SINGLE 1 AND THE REST ARE OS

Example 2

Solve the following system using Gauss Jordan Method

$$3x + 5y = 9$$

$$2x + 3y = 5$$

(1) WRITE AS AN AUGMENTED MATRIX

$$\begin{bmatrix} 3 & 5 & 9 \\ 2 & 3 & 5 \end{bmatrix}$$

(2) PIVOT
$$\frac{1}{3}R_{1} \rightarrow R_{1}$$
 $\begin{bmatrix} 1 & 5/3 & 3 \\ 2 & 3 & 5 \end{bmatrix}$

$$R_{2} - 2R_{1} \rightarrow R_{2} \qquad (2) - 2(1) \rightarrow 0$$

$$(3) - 2(5/3) \rightarrow -1/3$$

$$(5) - 2(3) \rightarrow -1$$

$$(1 5/3 | 3)$$

$$0 - 1/3 | -1$$

$$-3R_2 \rightarrow R_2$$

$$\begin{bmatrix} 0 & (1) & 3 \end{bmatrix}$$

$$\frac{|R_1 - \frac{1}{2}|C_2}{(1) - \frac{1}{2}(0) \to 1}$$

$$\frac{|S_1 - \frac{1}{2}(1) \to 0}{(\frac{1}{2}) - \frac{1}{2}(1) \to 0}$$

$$\begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 3 \end{bmatrix} DONE$$

$$(3) - \frac{5}{3}(3) \Rightarrow -2$$

$$x = -2, y = 3$$

Example 3

Solve

$$2y + 3z = 7$$
$$3x + 6y - 12z = -3$$
$$5x - 2y + 2z = -7$$

$$\begin{bmatrix} 0 & 2 & 3 & 7 \\ 3 & 4 & -12 & -3 \\ 5 & -2 & 2 & -7 \end{bmatrix} R_1 \leftrightarrow R_2 \begin{bmatrix} 3 & 6 & -12 & -3 \\ 0 & 2 & 3 & 7 \\ 5 & -2 & 2 & -7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 2 & 3 & 7 \\ 5 & -2 & 2 & -7 \end{bmatrix} R_3 - 5R_1 \begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 2 & 3 & 7 \\ 0 & -12 & 22 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 2 & 3/2 & 7/2 \\ 5 & -2 & 2 & -7 \end{bmatrix} R_1 - 2R_2 \begin{bmatrix} 1 & 0 & -7 & -8 \\ 0 & 1 & 3/2 & 7/2 \\ 0 & -12 & 22 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 2 & 3 & 7/2 \\ 0 & -12 & 22 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 2 & 3 & 7/2 \\ 0 & -12 & 22 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 2 & 3 & 7/2 \\ 0 & -12 & 22 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 2 & 3 & 7/2 \\ 0 & -12 & 22 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 2 & 3 & 7/2 \\ 0 & -12 & 22 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 2 & 3 & 7/2 \\ 0 & -12 & 22 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 2 & 3 & 7/2 \\ 0 & -12 & 22 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 2 & 3 & 7/2 \\ 0 & -12 & 22 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 2 & 3 & 7/2 \\ 0 & -12 & 22 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 2 & 3 & 7/2 \\ 0 & -12 & 22 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 2 & 3 & 7/2 \\ 0 & -12 & 22 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 2 & 3 & 7/2 \\ 0 & -12 & 22 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 2 & 3 & 7/2 \\ 0 & -12 & 22 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 2 & 3 & 7/2 \\ 0 & -12 & 22 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 1 & 3/2 \\ 0 & -12 & 22 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 1 & 3/2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 1 & 3/2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 1 & 3/2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 1 & 3/2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 1 & 3/2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 1 & 3/2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 1 & 3/2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 1 & 3/2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 1 & 3/2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 1 & 3/2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 1 & 3/2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 1 & 3/2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 1 & 3/2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 1 & 3/2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & -1 \\ 0 & 1 & 3/2 \\ 0 & 0 & 1$$

Example 4

Brian wants to buy a 50 items from Amazon (board games and DVDs). The board games cost \$35 and the DVDs cost \$20. With a maximum of \$1600, how many board games and DVDs can be buy? Set up only.

LET
$$X=\#$$
 OF BOARD FAMER

 $Y=\#$ OF DVDS

RESTRICTIONS (CONSTRAINTS)

(2) $35x + 20y = 1600$

SET UP MATRIX [1 | 50 | 1600]

ROW

ROW

ROW

R2-35R1 [0-15]

 $35-35(1)=0$
 $20-35(1)=-15$
 $15R_2 \rightarrow [0 | 10]$

R1 - 17
 10
 10