Show all work for full credit.

Here is a list of some identities and formulas.

\[
\begin{align*}
\sin^2(u) &= \frac{1}{2} (1 - \cos(2u)) \\
\cos^2(u) &= \frac{1}{2} (1 + \cos(2u)) \\
2 \sin(u) \cos(u) &= \sin(2u)
\end{align*}
\]

\[
\text{proj}_a \vec{b} = \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \right) \vec{a}
\]

\[
\text{comp}_a \vec{b} = \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|} \right) \vec{a}
\]

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(\cos(\theta))</th>
<th>(\sin(\theta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-\pi)</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>(-5\pi/6)</td>
<td>(-\sqrt{3}/2)</td>
<td>-1/2</td>
</tr>
<tr>
<td>(-3\pi/4)</td>
<td>(-\sqrt{2}/2)</td>
<td>-\sqrt{2}/2</td>
</tr>
<tr>
<td>(-2\pi/3)</td>
<td>-1/2</td>
<td>-\sqrt{3}/2</td>
</tr>
<tr>
<td>(-\pi/2)</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>(-\pi/3)</td>
<td>1/2</td>
<td>-\sqrt{3}/2</td>
</tr>
<tr>
<td>(-\pi/4)</td>
<td>\sqrt{2}/2</td>
<td>-\sqrt{2}/2</td>
</tr>
<tr>
<td>(-\pi/6)</td>
<td>\sqrt{3}/2</td>
<td>-1/2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(\pi/6)</td>
<td>\sqrt{3}/2</td>
<td>1/2</td>
</tr>
<tr>
<td>(\pi/4)</td>
<td>\sqrt{2}/2</td>
<td>\sqrt{2}/2</td>
</tr>
<tr>
<td>(\pi/3)</td>
<td>1/2</td>
<td>\sqrt{3}/2</td>
</tr>
<tr>
<td>(\pi/2)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(2\pi/3)</td>
<td>-1/2</td>
<td>\sqrt{3}/2</td>
</tr>
<tr>
<td>(3\pi/4)</td>
<td>-\sqrt{2}/2</td>
<td>\sqrt{2}/2</td>
</tr>
<tr>
<td>(5\pi/6)</td>
<td>-\sqrt{3}/2</td>
<td>1/2</td>
</tr>
<tr>
<td>(\pi)</td>
<td>-1</td>
<td>0</td>
</tr>
</tbody>
</table>
1. Consider the curve \(x = 3 \sin t, \ y = 4 \cos t \) for \(0 \leq t \leq \frac{3\pi}{2} \).
 (a) Graph the curve, indicating initial and terminal points, and the direction of the curve.
 (b) Find the equation of the tangent line at the point where \(t = \pi \).
 (c) Set up the equation (do not evaluate) indicating the length of the given curve.

2. Let \(x = \sin(\pi t) \) and \(y = t^2 + t \). Find the equation of the tangent lines to the curve at \((0, 2) \).

3. Find the length of the parametric curve
 \[
 x = t \sin(t) \\
 y = t \cos(t) \\
 0 \leq t \leq 1
 \]

4. Find \(\frac{\partial^2 y}{\partial x^2} \) for the parametric curve
 \[
 x = t^2 + 1 \\
 y = e^t - 1
 \]

5. Sketch \(r = 3 - 3 \sin(\theta) \).

6. Let \(r_1 = 1 - \sin(\theta) \) and \(r_2 = 1 \).
 (a) Sketch the given functions on the same graph.
 (b) Set up an integral to find the arc length of \(r_1 \) when \(0 \leq \theta \leq \pi/2 \). Do not evaluate.
 (c) Set up an integral to find the area inside \(r_1 \) and outside \(r_2 \). Evaluate to find the area.

7. Let \(r_1 = 4 \sin(\theta) \) and \(r_2 = 2 \).
 (a) Sketch the given functions on the same graph.
 (b) Set up an integral to find the arc length of \(r_1 \) when \(0 \leq \theta \leq \pi/2 \). Do not evaluate.
 (c) Set up an integral to find the area inside \(r_1 \) and outside \(r_2 \). Evaluate to find the area.

8. Consider the curve \(r = \sin(3\theta) \).
 (a) Sketch the curve \(r \).
 (b) Evaluate the slope of the tangent line at \(\theta = \pi/6 \).
 (c) Find the equation of the tangent line at \(\theta = \pi/6 \).

9. Find the area of the region inside both the curve \(r = \cos \theta \) and \(r = \sin \theta \).

10. Determine whether the vectors are parallel, orthogonal, or neither.
 (a) \(\mathbf{a} = \langle -3, 5, 11 \rangle, \quad \mathbf{b} = \langle 10, -5, 5 \rangle \)
 (b) \(\mathbf{a} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}, \quad \mathbf{b} = 3\mathbf{i} + 6\mathbf{j} + 3\mathbf{k} \)
(c) \(\vec{a} = \langle 2, -3, 8 \rangle \) and \(\vec{b} = \langle -6, 9, -24 \rangle \).

11. Given that \(\vec{a} = \langle 3, -4, -5 \rangle \), \(\vec{b} = \langle -2, 1, 2 \rangle \), and \(\vec{c} = \langle -6, -3, 2 \rangle \). Answer the following questions.

(a) Evaluate \(2\vec{a} - 3\vec{b} + 2\vec{c} \)

(b) Evaluate \(\frac{|\vec{a}| \vec{b}}{|\vec{c}|} \)

(c) Find the angle between \(\vec{b} \) and \(\vec{c} \).

(d) Are the vectors \(\vec{a} \) and \(\vec{b} \) orthogonal to each other? Why or why not.

(e) Find \(\vec{b} \times \vec{c} \)

(f) Find \(|\vec{b} \times \vec{c}| \)

(g) Find the vector projection of \(\vec{b} \) onto \(\vec{c} \).

(h) Find the direction cosines and the direction angles of the vector \(\vec{a} \). Round your answer to nearest degrees.

12. Given three points \(P(2, 1, 2) \), \(Q(3, 8, -6) \), and \(R(-2, -3, 1) \), find

(a) Find the vector equation of the line that passes through the points \(P(2, 1, 2) \) and \(Q(3, 8, -6) \).

(b) Find the parametric equations of the line that passes through the points \(P(2, 1, 2) \) and \(R(-2, -3, 1) \).

(c) Are the lines \(PQ \) and \(PR \) parallel, orthogonal, or neither.

(d) Find the equation of the plane that passes through the points \(P(2, 1, 2) \), \(Q(3, 8, -6) \), and \(R(-2, -3, 1) \).