14.4 Tangent Planes and Linear Approximations

Zoom in on a single variable function and it looks like a straight line. We call this the tangent line at a point \((x_0, y_0)\).

The graph on the right is what it looks like after zooming in a bit.

In two variables we don’t have tangent lines. Since functions of two variables are surfaces, when we zoom in at a given point \((x_0, y_0, z_0)\) it will look like a plane. In this section we will discuss tangent planes, how to find them, and what we can do with them.
The left graph shows a curve and what looks like a line going through a point. I rotated the graph slightly and you can see it actually is a plane that goes through the point. If you zoom in on that point you won’t be able to tell the difference between the curve and the tangent line.

Definition 1: Equation of a Tangent Plane

Suppose a surface S has the equation $z = f(x, y)$ such that f_x and f_y are continuous and let $P(x_0, y_0, z_0)$ be a point on S. Then the equation for the tangent plane to the surface $z = f(x, y)$ at P is

$$z - z_0 = f_x(x_0, y_0)(x-x_0) + f_y(x_0, y_0)(y-y_0)$$
Example 1

Find the tangent plane on \(z = x^2 + x \cos(y) \) at the point \(P(\pi/, \pi/2) \).

1. Find \(f_x \) and \(f_x(\pi, \pi/2) \)

\[
\begin{align*}
 f_x &= 2x + \cos(y) \\
 f_x(\pi, \pi/2) &= 2\pi + \cos(\pi/2) = 2\pi
\end{align*}
\]

2. Find \(f_y \) and \(f_y(\pi, \pi/2) \)

\[
\begin{align*}
 f_y &= -x \sin(y) \\
 f_y(\pi, \pi/2) &= -\pi \sin(\pi/2) = -\pi
\end{align*}
\]

3. Find \(z_0 \)

\[
 z_0 = (\pi)^2 + \pi(\cos(\pi/2)) = \pi^2
\]

4. Use the formula for the tangent plane

\[
 z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)
\]

\[
 z - \pi^2 = 2\pi(x - \pi) - \pi(y - \pi/2)
\]

\[
 z = 2\pi x - 2\pi^2 - \pi y + \pi^2/2 + \pi^2
\]

\[
 z = 2\pi x - \pi y - \pi^2/2
\]
Example 2

Find the tangent plane on \(z = 2x^2 + y^2 \) at the point \(P(1, 1, 3) \).

1. Find \(f_x \) and \(f_x(1, 1) \)
 \[
 f_x = 4x \\
 f_x(1, 1) = 4
 \]

2. Find \(f_y \) and \(f_y(1, 1) \)
 \[
 f_y = 2y \\
 f_y(1, 1) = 2
 \]

3. \(z_0 = 3 \)

4. Use the formula for the tangent plane
 \[
 z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)
 \]
 \[
 z - 3 = 4(x - 1) + 2(y - 1) \\
 z - 3 = 4x - 4 + 2y - 2 \\
 z = 4x + 2y - 3
 \]

Definition 2: Linear Approximation

The tangent plane \(L(x, y) = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) + z_0 \) is also called the linear approximation. We can use it to approximate \(z \) values near \(P(x_0, y_0) \).
Example 3

For the previous problem the linear approximation could be written as

\[L(x, y) = 4x + 2y - 3 \]

Suppose we want to estimate \(f(1.1, 0.95) \).

1. Actual Value: \(f(1.1, 0.95) = 2(1.1)^2 + (0.95)^2 = 3.3225 \)

2. Linear Approximation:

\[f(1.1, 0.95) \approx L(1.1, 0.95) = 4(1.1) + 2(0.95) - 3 = 3.3 \]

Keep in mind that the approximation gets worse as you move away from the point \((1, 1, 3)\).

1. \(f(2, 3) = 2(2)^2 + 3^2 = 17 \)

2. \(L(2, 3) = 4(2) + 2(3) - 3 = 11 \)

Example 4

Show \(xe^{xy} \approx x + y \) near \(P(1,0) \).

Since \(x + y \) is a plane in \(\mathbb{R} \), it’s really asking us to verify if \(z = x + y \) is the tangent plane at \(P(1,0) \).

1. Let \(f(x, y) = xe^{xy} \)

2. Find \(f_x \) and \(f_x(1,0) \)

\[f_x = 1e^{xy} + x e^{xy} \cdot y = e^{xy} + xy e^{xy} \]

\[f_x(1,0) = e^0 + 1(0)e^0 = 1 \]

3. Find \(f_y \) and \(f_y(1,0) \)

\[f_y = xe^{xy} \cdot x = x^2e^{xy} \]

\[f_y(1,0) = 1^2e^0 = 1 \]
4. \(z_0 = 1e^0 = 1 \)

5. Use the formula for the linear approximation (tangent plane)

\[
z - z_0 = f_x(1, 0)(x - x_0) + f_y(1, 0)(y - y_0) \\
z - 1 = 1(x - 1) + 1(y - 0) \\
z = x + y
\]