13.3 Arc Length

In section 10.2 with parametric equations \(x = f(t) \) and \(y = g(t) \), \(a \leq t \leq b \), the arc length was

\[
L = \int_a^b \sqrt{(f'(t))^2 + (g'(t))^2} \, dt = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt
\]

The length of a space curve is defined in a similar way.

Definition 1: Arc Length

Let \(\vec{r}(t) = < f(t), g(t), h(t) > \) or \(x = f(t), y = g(t), z = h(t), a \leq t \leq b \), the length of the curve is

\[
L = \int_a^b \sqrt{(f'(t))^2 + (g'(t))^2 + (h'(t))^2} \, dt = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} \, dt
\]

Example 1

Find the arc length of the circular helix with vector equations \(\vec{r}(t) = \cos(t)i + \sin(t)j + tk \) from \((1, 0, 0)\) to \((1, 0, 2\pi)\).

1. Since the bounds for \(t \) aren’t given we need to find them. What’s the value of \(t \) that gives us the points \((1, 0, 0)\) and \((1, 0, 2\pi)\).

\[
(1, 0, 0) \Rightarrow t = 0
\]

\[
(1, 0, 2\pi) \Rightarrow t = 2\pi
\]

2. Find \(\vec{r}' \)

\[
\vec{r}' = < \frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt} >
\]
\[\frac{dx}{dt} = -\sin(t) \]
\[\frac{dy}{dt} = \cos(t) \]
\[\frac{dz}{dt} = 1 \]

3. Use the Arc Length Formula

\[L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} \, dt \]
\[= \int_{0}^{2\pi} \sqrt{(-\sin(t))^2 + (\cos(t))^2 + (1)^2} \, dt \]
\[= \int_{0}^{2\pi} \sqrt{\sin^2 t + \cos^2 t + 1} \, dt \]
\[= \int_{0}^{2\pi} \sqrt{2} \, dt \]
\[= \sqrt{2t} \bigg|_{0}^{2\pi} \]
\[= \sqrt{2}(2\pi) - \sqrt{2}(0) \]
\[= 2\sqrt{2}\pi \]