MATH 232

CALCULUS III

Brian Veitch • Fall 2015 • Northern Illinois University

10.5 Conic Sections

Definition 1: Parabola

A set of points in a plane that are equidistance from a fixed point F (called the focus) and a straight line (called the directrix).

Note: You are used to using $y = ax^2$ where $a = \frac{1}{4p}$

There are four forms for a parabola. They are shown below

Let $3x^2 = -8py$. Find the vertex, focus, directrix and sketch.

- 1. First thing let's set it up in the correct form: $x^2 = \frac{-8}{3}y$
- 2. The general form is $x^2 = 4py$. Find p by solving

$$4p = -\frac{8}{3}$$

$$p = -\frac{2}{3}$$

- 3. Focus: (0, -2/3)
- 4. Vertex: (0,0)
- 5. Directrix: y = 2/3
- 6. Sketch

Sketch $(y-2)^2 = 2x + 1$.

We can ignore the transformation on the function and focus just on the general form:

$$y^2 = 2x$$

1. Find p

$$4p = 2$$

$$p = \frac{1}{2}$$

- 2. Focus: (1/2,0)
- 3. Directrix: x = -1/2
- 4. Vertex: (0,0).
- $y^2 = 2x$ looks like

But this is not our function. We need to do a tranformation on it. The $(y-2)^2$ part tells us to shift up 2 units. The 2x + 1 = 2(x + 1/2) tells us to shift left 1/2 units. This gives us

with focus (0,1) and directrix x = -1.

Definition 2: Ellipse

A set of points on a plane such that the sum of whose distances from two fixed points F_1 and F_2 is constant.

Horizontal Ellipse: $a \ge b$

Formula:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

 $c^2 = a^2 - b^2$

Vertical Ellipse: $a \ge b$

Formula:
$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$

 $c^2 = a^2 - b^2$

Sketch $8x^2 + 36y^2 = 288$.

Need to divide by 288 on both sides to get it in the correct form to get

$$\frac{x^2}{36} + \frac{y^2}{8} = 1$$

From here we see that $a^2 = 36 \Rightarrow a = 6$ and $b^2 = 8 \Rightarrow b = \sqrt{8}$. To find c

$$c^2 = a^2 - b^2$$

$$c^2 = 36 - 8 = 24$$

$$c = \sqrt{24}$$

Definition 3: Hyperbola

A set of points in a plane such that the difference of whose distances from two fixed points is a constant.

Formula:
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
$$c^2 = a^2 + b^2$$

Formula:
$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

 $c^2 = a^2 + b^2$

Sketch
$$\frac{y^2}{9} - \frac{x^2}{4} = 1$$

From the equation we see $a^2 = 9 \Rightarrow a = 3$ and $b^2 = 4 \Rightarrow b = 2$. Also $c^2 = a^2 + b^2 = 3^2 + 4^2 = 25$, so c = 5. Using the correct form we have the following graph

