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5.6 Absolute Convergence and The Ratio and Root Tests

Recall from our previous section that
∑ 1

n
diverged but

∑ (−1)n−1

n
converged. Both of

these sequences have bn =
1

n
. Again, one converges and the other does not.

We introduce two terms to distinguish between these two cases. Let∑
|an| = |a1|+ |a2|+ |a3|+ |a4|+ . . .

Definition 5.11 (Absolute Convergence). A series
∑

an is Absolutely Convergent if

the series
∑
|an| is convergent.

A quick note: All convergent series with positive terms are automatically absolutely
convergent since ∑

|an| =
∑

an

Consider the following two examples:

Example 5.50.
∑ (−1)n−1

n2

∑∣∣∣∣(−1)n−1

n2

∣∣∣∣ =
∑ 1

n2
which converges

So the series
∑ (−1)n−1

n2
is absolutely convergent.

Example 5.51.
∑ (−1)n−1

n

Even though
∑ (−1)n−1

n
converges,

∑∣∣∣∣(−1)n−1

n

∣∣∣∣ =
∑ 1

n
diverges
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So we cannot say it’s absolutely convergent. But the original series did converge. We
now introduce our second term for convergence.

Definition 5.12 (Contitional Convergence). If
∑

an converges but
∑
|an| diverges, then

the series
∑

an is said to be Conditionally Convergent

Theorem 5.6. If a series
∑

an is absolutely convergent, then
∑

an is convergent.

Example 5.52. Determine if
∑ cos(n)

n2
converges or diverges.

The previous theorem states that if it’s absolutely convergent, then it converges. Let’s
check for absolute convergence.

∑∣∣∣∣cos(n)

n2

∣∣∣∣ =
∑ | cos(n)|

n2
≤
∑ 1

n2

By the Direct Comparison Test, since
∑ 1

n2
converges, then∑∣∣∣∣cos(n)

n2

∣∣∣∣ converges

Therefore, ∑ cos(n)

n2
converges absolutely

We now go over our last two tests to determine convergence or divergence.

5.6.1 Ratio Test

1. If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L < 1, then
∑

an is absolutely convergent.

2. If lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L > 1, then
∑

an is divergent.
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3. If

∣∣∣∣an+1

an

∣∣∣∣ = 1, then the test is inconclusive. You need to use a different test.

Example 5.53.

1. Determine if
∑ (−1)nn4

7n
converges.

an+1 =
(−1)n+1(n + 1)4

7n+1
, and an =

(−1)nn4

7n

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(−1)n+1(n + 1)4

7n+1
· 7n

(−1)nn4

∣∣∣∣ = lim
n→∞

∣∣∣∣(n + 1)4

n4
· 7n

7n · 7

∣∣∣∣
=

1

7
lim
n→∞

(n + 1)4

n4
=

1

7
< 1

Since L =
1

7
< 1, the Ratio Test concludes

∑ (−1)nn4

7n
is absolutely convergent.

2. Determine if
∑ nn

n!
converges.

Since lim
n→∞

nn

n!
=∞ 6= 0, we know it diverges. But let’s go ahead and show it with the

Ratio Test.

an+1 =
(n + 1)n+1

(n + 1)!
, and an =

nn

n!

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(n + 1)n+1

(n + 1)!
· n!

nn

∣∣∣∣ = lim
n→∞

∣∣∣∣(n + 1)n · (n + 1)

nn
· n!

(n + 1) · n!

∣∣∣∣
= lim

n→∞

∣∣∣∣(n + 1)n

nn

∣∣∣∣ = lim
n→∞

(
n + 1

n

)n

= lim
n→∞

(
1 +

1

n

)n
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This is a L’Hospital Problem, which I’ll let you work on. If you do it correctly, you
should get

L = lim
n→∞

(
1 +

1

n

)n

= e > 1

Since L = e > 1, the Ratio Test concludes
∑ nn

n!
diverges.

3. Use the Ratio Test on
∑ 1

n
and

∑ 1

n2
.

We know
∑ 1

n
diverges and

∑ 1

n2
converges. Let’s see what the Ratio Test tells us.

(a)
∑ 1

n

an+1 =
1

n + 1
, and an =

1

n

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣n + 1

n

∣∣∣∣ = 1

The Ratio Test states that if L = 1, the test is inconclusive. We would need to
use another test to determine its convergence. Good thing we have the p-series
test, right?

(b)
∑ 1

n2

an+1 =
1

(n + 1)2
, and an =

1

n2

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(n + 1)2

n2

∣∣∣∣ = 1
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The Ratio Test states that if L = 1, the test is inconclusive. We would need to
use another test to determine its convergence.

4. Determine if
∑ 1

(2n)!
converges.

an+1 =
1

(2(n + 1))!
, and an =

1

(2n)!

L = lim
n→∞

∣∣∣∣ 1

(2(n + 1))!
· (2n)!

1

∣∣∣∣ = lim
n→∞

∣∣∣∣ (2n)!

(2n + 2)!

∣∣∣∣
The trick here is to write out a few terms of the factorial until it matches up with
another factorial.

(2n + 1)! = (2n + 2)(2n + 1)! = (2n + 2)(2n + 1)(2n)!

L = lim
n→∞

∣∣∣∣ (2n)!

(2n + 2)!

∣∣∣∣ = lim
n→∞

∣∣∣∣ (2n)!

(2n + 2)(2n + 1)(2n)!

∣∣∣∣ = lim
n→∞

1

(2n + 2)(2n + 1)
= 0

Since L = 0 < 1, the Ratio Test concludes
∑ 1

(2n)!
is absolutely convergent.

5.6.2 Root Test

1. If lim
n→∞

n
√
|an| = L < 1, then

∑
an is absolutely convergent.

2. If lim
n→∞

n
√
|an| = L > 1, then

∑
an is divergent.
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3. If lim
n→∞

n
√
|an| = L = 1, then the test is inconclusive. You must use a different test to

determine convergence.

The root test is useful when you have a sequence raised to the n-th power in some way,

an = (bn)n

Example 5.54.

1. Determine if
∑(

6n− 3

11n + 4

)n

converges.

L = lim
n→∞

n

√∣∣∣∣( 6n− 3

11n + 4

)n∣∣∣∣ = lim
n→∞

6n− 3

11n + 4
=

6

11
< 1

Since L =
6

11
< 1, the Root Test concludes

∑(
6n− 3

11n + 4

)n

is absolutely convergent.

2. Determine if
∑(

1 +
1

n

)−n2

converges.

L = lim
n→∞

n

√(
1 +

1

n

)−n2

= lim
n→∞

n

√√√√((1 +
1

n

)−n)n

= lim
n→∞

(
1 +

1

n

)−n

You evaluate this limit using L’Hospitals Rule. If you do it correctly, you get

lim
n→∞

(
1 +

1

n

)−n
= e−1

Since L = e−1 < 1, the Root Test concludes
∑(

1 +
1

n

)−n2

converges.

3. Is there any value of k that makes
∑ 2n

nk
converge? For example, does something like

∑ 2n

n100,000,000,000
converge?
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Let’s go ahead and use the Ratio Test.

an+1 =
2n+1

(n + 1)k
, and an =

2n

nk

L = lim
n→∞

∣∣∣∣ 2n+1

(n + 1)k
· n

k

2n

∣∣∣∣ = lim
n→∞

∣∣∣∣ 2nk

(n + 1)k

∣∣∣∣ = 2

Since L = 2 > 1, the Ratio Test concludes
∑ 2n

nk
diverges for all values of k.

4. Does
∑ 1

lnn
converge?

Since we’re still in the Ratio and Root Test section, we might as well use it. Since it
doesn’t have a power of n, we’ll use the Ratio Test.

an+1 =
1

ln(n + 1)
, and an =

1

lnn

L = lim
n→∞

∣∣∣∣ 1

ln(n + 1)
· ln(n)

1

∣∣∣∣ = lim
n→∞

ln(n)

ln(n + 1)
=

LH

lim
n→∞

1
n
1

n+1

= lim
n→∞

n

n + 1
= 1

Since L = 1, the Ratio Test is inconclusive. We need another test. We can do a Direct

Comparison with
∑ 1

n
. Since lnn < n for all n ≥ 1, then

1

lnn
>

1

n
for all n ≥ 1.

Since
∑ 1

n
diverges, by the Direct Comparison Test, so does

∑ 1

lnn
.
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