Math 230

CALCULUS II

Brian Veitch • Fall 2015 • Northern Illinois University

Inverse Trig Functions

Trig functions are not one to one, so they do not have inverse functions. To deal with this, just like how we dealt with $f(x) = x^2$, we must restrict the trig function's domain.

Let's take a look at $f(x) = \cos(x)$

 $f(x) = \cos(x)$ does not pass the horizontal line test. But if we restrict the domain, it's possible to make it one to one.

If we restrict the domain to $[0, \pi]$, then it passes the horizontal line test, and therefore has an inverse.

By definition, the inverse is

$$\cos^{-1} x = y \quad \Rightarrow \quad \cos(y) = x, \text{ where } 0 \le y \le \pi$$

Example 1

Find $\cos^{-1}(\sqrt{2}/2)$

1. To solve this we need to find what value of x gives us

$$\cos(x) = \sqrt{2}/2$$

2. Since $\cos(\pi/4) = \sqrt{2}/2$, our answer is

$$\cos^{-1}(\sqrt{2}/2) = \pi/4$$

Example 2

Find $\cos^{-1}(\cos(-\pi))$

1. Even though these are inverse functions, they just don't cancel leaving us with $-\pi$. What I mean,

$$\cos^{-1}(\cos(-\pi)) \neq -\pi$$

By definition,

$$\cos^{-1}(\cos(-\pi)) = Y$$

is the same as

$$cos(Y) = cos(-\pi)$$
, where $0 \le Y \le \pi$

Since $\cos(-\pi) = -1$, where in $0 \le Y \le \pi$ does $\cos(Y) = -1$. That is at $Y = \pi$.

Now on to the other inverse trig functions.

$$\sin^{-1}(x) = y$$
 \Rightarrow $\sin(y) = x$ where $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

$$\tan^{-1}(x) = y$$
 \Rightarrow $\tan(y) = x$ where $-\frac{\pi}{2} < y < \frac{\pi}{2}$

Note the inequalities on the range of \tan^{-1} , i.e, y. They are strictly less than signs since $\tan(\pi/2)$ and $\tan(-\pi/2)$ do not exist.

Example 3

Find $\tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$

Set it up like this,

$$\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = y$$

so,

$$\tan(y) = \frac{1}{\sqrt{3}}$$

Where does this occur on the unit circle between $-\frac{\pi}{2}$ to $\frac{\pi}{2}$?

$$\tan(\pi/6) = \frac{1}{\sqrt{3}}$$

therefore,

$$\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}$$

Example 4

Find $\csc^{-1}(2)$

Set it up like this,

$$\csc^{-1}(2) = y$$

Calculus II

where,

$$\csc(y) = 2$$

But using $\csc(y)$ is hard. Let's change that to $\frac{1}{\sin(x)}$

$$\frac{1}{\sin(y)} = 2 \quad \to \sin(y) = \frac{1}{2}$$

So where in the interval $[-\pi/2, \pi/2]$, does $\sin(y) = \frac{1}{2}$

$$\sin(\pi/6) = \frac{1}{2}$$

therefore,

$$\csc^{-1}(2) = \pi/6$$

Formula 1: Derivative of the Inverse Trig Functions

$$\frac{d}{dx}(\sin^{-1}(x)) = \frac{1}{\sqrt{1-x^2}}$$
 where $-1 < x < 1$

$$\frac{d}{dx}(\cos^{-1}(x)) = -\frac{1}{\sqrt{1-x^2}}$$
 where $-1 < x < 1$

$$\frac{d}{dx}(\tan^{-1}(x)) = \frac{1}{1+x^2}$$

$$\frac{d}{dx}(\csc^{-1}(x)) = -\frac{1}{x\sqrt{x^2 - 1}}$$

$$\frac{d}{dx}(\sec^{-1}(x)) = \frac{1}{x\sqrt{x^2 - 1}}$$

$$\frac{d}{dx}(\cot^{-1}(x)) = -\frac{1}{1+x^2}$$

Example 5

$$1. \ \frac{d}{dx} \left[\sqrt{\tan^{-1}(x)} \right]$$

$$2. \frac{d}{dx} \left[\sqrt{x^2 - 1} \cdot \sec^{-1}(3x) \right]$$

$$3. \ \frac{d}{dx} \left[\frac{1}{\cos^{-1}(x)} \right]$$

$$1. \ \frac{d}{dx} \left[\sqrt{\tan^{-1}(x)} \right]$$

$$\frac{d}{dx} \left[\sqrt{\tan^{-1}(x)} \right] = \frac{1}{2} (\tan^{-1}(x))^{-1/2} \cdot \frac{d}{dx} \left[\tan^{-1}(x) \right]$$
$$= \frac{1}{2} (\tan^{-1}(x))^{-1/2} \cdot \frac{1}{1+x^2}$$

$$2. \frac{d}{dx} \left[\sqrt{x^2 - 1} \cdot \sec^{-1}(3x) \right]$$

$$\frac{d}{dx} \left[\sqrt{x^2 - 1} \cdot \sec^{-1}(3x) \right] = \sqrt{x^2 - 1} \cdot \frac{d}{dx} \left[\sec^{-1}(3x) \right] + \sec^{-1}(3x) \cdot \frac{d}{dx} \left[\sqrt{x^2 - 1} \right]$$

$$= \sqrt{x^2 - 1} \cdot \frac{1}{(3x)\sqrt{(3x)^2 - 1}} \cdot (3) + \sec^{-1}(3x) \cdot \frac{1}{2} (x^2 - 1)^{-1/2} \cdot (2x)$$

$$= \frac{\sqrt{x^2 - 1}}{3x\sqrt{(3x)^2 - 1}} + \frac{x \sec^{-1}(3x)}{\sqrt{x^2 - 1}}$$

3.
$$\frac{d}{dx} \left[\frac{1}{\cos^{-1}(x)} \right]$$

Note: $\frac{1}{\cos^{-1}(x)} = (\cos^{-1}(x))^{-1}$

Be careful that you don't confuse the -1s. One is the notation for trig inverse, and the other is an exponent of -1.

$$\frac{d}{dx} \left[\frac{1}{\cos^{-1}(x)} \right] = \frac{d}{dx} \left[\left(\cos^{-1}(x) \right)^{-1} \right]$$

$$= -1 \left(\cos^{-1}(x) \right)^{-2} \cdot \frac{d}{dx} \left[\cos^{-1}(x) \right]$$

$$= \frac{1}{(\cos^{-1}(x))^2 \sqrt{1 - x^2}}$$

Integrals of Inverse Trig Functions

Example 6

1.
$$\int \frac{\tan^{-1} x}{1+x^2} dx$$

$$2. \int \frac{1}{x\sqrt{x^2 - 4}} \, dx$$

3.
$$\int \frac{x}{x^4 + 9}$$

1.
$$\int \frac{\tan^{-1} x}{1+x^2} dx$$

This is a pretty straightforward substitution

(a) Let
$$u = \tan^{-1}(x)$$

(b)
$$du = \frac{1}{1+x^2} dx$$

(c) Now substitute

$$\int \frac{\tan^{-1} x}{1 + x^2} dx = \int u du$$

$$= \frac{1}{2}u^2 + C$$

$$= \frac{1}{2}(\tan^{-1} x)^2 + C$$

$$2. \int \frac{1}{x\sqrt{x^2-4}} \, dx$$

We know that $\int \frac{1}{x\sqrt{x^2-1}} dx = \sec^{-1}(x)$, but that's not quite what we have. Do you see the 4 in $\sqrt{x^2-4}$? It needs to be a 1. So here's what we do

(a) Factor out 4

$$\frac{1}{x\sqrt{4\left(\frac{x^2}{4}-1\right)}}$$

$$\frac{1}{2x\sqrt{\left(\frac{x}{2}\right)^2-1}}$$

See? Now we have the correct form of $u^2 - 1$.

(b) Let $u = \frac{x}{2}$. Note that x = 2u for the denominator.

(c)
$$du = \frac{1}{2} dx$$

(d) Now substitute

$$\int \frac{1}{x\sqrt{x^2 - 4}} dx = \int \frac{1}{2u\sqrt{u^2 - 1}} du$$
$$= \frac{1}{2} \sec^{-1}(u) + C$$
$$= \frac{1}{2} \sec^{-1}(x/2) + C$$

3.
$$\int \frac{x}{x^4 + 9}$$

- (a) If the denominator looked like $x^2 + 9$, it would have the similar form for \tan^{-1} .
- (b) Let $u = x^2$
- (c) $du = 2x dx \rightarrow \frac{1}{2} du = x dx$
- (d) Substitute

$$\int \frac{x}{x^4 + 9} = \frac{1}{2} \int \frac{1}{u^2 + 9} \ du$$

WAIT!! What about the 9 in $u^2 + 9$. It's suppose to be $u^2 + 1$. Ugh.

(e) Factor out 9

$$\frac{1}{9\left(\frac{u^2}{9}+1\right)}$$

$$\frac{1}{9\left(\left(\frac{u}{3}\right)^2 + 1\right)}$$

- (f) Oh boy, another substitution
- (g) Let $w = \frac{u}{3}$
- (h) $dw = \frac{1}{3} du \rightarrow 3 dw = du$

$$\frac{1}{2} \int \frac{1}{9\left(\left(\frac{u}{3}\right)^2 + 1\right)} du = \frac{1}{2} \frac{1}{9} \int \frac{1}{w^2 + 1} (3 dw)$$

$$= \frac{1}{6} \int \frac{1}{w^2 + 1} dw$$

$$= \frac{1}{6} \tan^{-1}(w)$$

$$= \frac{1}{6} \tan^{-1}\left(\frac{u}{3}\right)$$

$$= \frac{1}{6} \tan^{-1}\left(\frac{x^2}{3}\right) + C$$