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Inverse Trig Functions

Trig functions are not one to one, so they do not have inverse functions. To deal with this,

just like how we dealt with f(x) = x2, we must restrict the trig function’s domain.

Let’s take a look at f(x) = cos(x)

f(x) = cos(x) does not pass the horizontal line test. But if we restrict the domain, it’s

possible to make it one to one.
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If we restrict the domain to [0, π], then it passes the horizontal line test, and therefore

has an inverse.

By definition, the inverse is

cos−1 x = y ⇒ cos(y) = x, where 0 ≤ y ≤ π

Example 1

Find cos−1(
√

2/2)

1. To solve this we need to find what value of x gives us

cos(x) =
√

2/2

2. Since cos(π/4) =
√

2/2, our answer is

cos−1(
√

2/2) = π/4

Example 2

Find cos−1(cos(−π))

1. Even though these are inverse functions, they just don’t cancel leaving us with −π.

What I mean,

cos−1(cos(−π)) 6= −π

By definition,

cos−1(cos(−π)) = Y
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is the same as

cos(Y ) = cos(−π), where 0 ≤ Y ≤ π

Since cos(−π) = −1, where in 0 ≤ Y ≤ π does cos(Y ) = −1. That is at Y = π.

Now on to the other inverse trig functions.

sin−1(x) = y ⇒ sin(y) = x where − π

2
≤ y ≤ π

2

tan−1(x) = y ⇒ tan(y) = x where − π

2
< y <

π

2

Note the inequalities on the range of tan−1, i.e, y. They are strictly less than signs since

tan(π/2) and tan(−π/2) do not exist.

Example 3

Find tan−1

(
1√
3

)

Set it up like this,

tan−1

(
1√
3

)
= y

so,

tan(y) =
1√
3

Where does this occur on the unit circle between −π
2

to
π

2
?

tan(π/6) =
1√
3

therefore,

tan−1

(
1√
3

)
=
π

6

Example 4

Find csc−1(2)
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Set it up like this,

csc−1(2) = y

where,

csc(y) = 2

But using csc(y) is hard. Let’s change that to
1

sin(x)

1

sin(y)
= 2 → sin(y) =

1

2

So where in the interval [−π/2, π/2], does sin(y) =
1

2

sin(π/6) =
1

2

therefore,

csc−1(2) = π/6
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Formula 1: Derivative of the Inverse Trig Functions

d

dx
(sin−1(x)) =

1√
1− x2

where − 1 < x < 1

d

dx
(cos−1(x)) = − 1√

1− x2
where − 1 < x < 1

d

dx
(tan−1(x)) =

1

1 + x2

d

dx
(csc−1(x)) = − 1

x
√
x2 − 1

d

dx
(sec−1(x)) =

1

x
√
x2 − 1

d

dx
(cot−1(x)) = − 1

1 + x2

Example 5

1.
d

dx

[√
tan−1(x)

]
2.

d

dx

[√
x2 − 1 · sec−1(3x)

]
3.

d

dx

[
1

cos−1(x)

]

1.
d

dx

[√
tan−1(x)

]
d

dx

[√
tan−1(x)

]
=

1

2
(tan−1(x))−1/2 · d

dx

[
tan−1(x)

]
=

1

2
(tan−1(x))−1/2 · 1

1 + x2
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2.
d

dx

[√
x2 − 1 · sec−1(3x)

]
d

dx

[√
x2 − 1 · sec−1(3x)

]
=
√
x2 − 1 · d

dx

[
sec−1(3x)

]
+ sec−1(3x) · d

dx

[√
x2 − 1

]
=
√
x2 − 1 · 1

(3x)
√

(3x)2 − 1
· (3) + sec−1(3x) · 1

2
(x2 − 1)−1/2 · (2x)

=

√
x2 − 1

3x
√

(3x)2 − 1
+
x sec−1(3x)√

x2 − 1

3.
d

dx

[
1

cos−1(x)

]
Note:

1

cos−1(x)
= (cos−1(x))

−1

Be careful that you don’t confuse the −1s. One is the notation for trig inverse, and

the other is an exponent of -1.

d

dx

[
1

cos−1(x)

]
=

d

dx

[(
cos−1(x)

)−1
]

= −1
(
cos−1(x)

)−2 · d
dx

[
cos−1(x)

]
=

1

(cos−1(x))2
√

1− x2

Integrals of Inverse Trig Functions

Example 6

1.

∫
tan−1 x

1 + x2
dx

2.

∫
1

x
√
x2 − 4

dx

3.

∫
x

x4 + 9

1.

∫
tan−1 x

1 + x2
dx

This is a pretty straightforward substitution
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(a) Let u = tan−1(x)

(b) du =
1

1 + x2
dx

(c) Now substitute ∫
tan−1 x

1 + x2
dx =

∫
u du

=
1

2
u2 + C

=
1

2

(
tan−1 x

)2
+ C

2.

∫
1

x
√
x2 − 4

dx

We know that

∫
1

x
√
x2 − 1

dx = sec−1(x), but that’s not quite what we have. Do you

see the 4 in
√
x2 − 4? It needs to be a 1. So here’s what we do

(a) Factor out 4

1

x

√
4

(
x2

4
− 1

)
1

2x

√(x
2

)2
− 1

See? Now we have the correct form of u2 − 1.

(b) Let u =
x

2
. Note that x = 2u for the denominator.

(c) du =
1

2
dx

(d) Now substitute ∫
1

x
√
x2 − 4

dx =

∫
1

2u
√
u2 − 1

du

=
1

2
sec−1(u) + C

=
1

2
sec−1(x/2) + C
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3.

∫
x

x4 + 9

(a) If the denominator looked like x2 + 9, it would have the similar form for tan−1.

(b) Let u = x2

(c) du = 2x dx→ 1

2
du = x dx

(d) Substitute ∫
x

x4 + 9
=

1

2

∫
1

u2 + 9
du

WAIT!! What about the 9 in u2 + 9. It’s suppose to be u2 + 1. Ugh.

(e) Factor out 9

1

9

(
u2

9
+ 1

)
1

9

((u
3

)2
+ 1

)
(f) Oh boy, another substitution

(g) Let w =
u

3

(h) dw =
1

3
du→ 3 dw = du

1

2

∫
1

9

((u
3

)2
+ 1

) du =
1

2

1

9

∫
1

w2 + 1
(3 dw)

=
1

6

∫
1

w2 + 1
dw

=
1

6
tan−1(w)

=
1

6
tan−1

(u
3

)
=

1

6
tan−1

(
x2

3

)
+ C
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