Directions: Show all work on a separate sheet of paper for full credit.

- 1. Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms and $\sum b_n$ is convergent.
 - (a) If $a_n > b_n$ for all n, what can you say about $\sum a_n$? Why?Can not be determined.(b) If $a_n < b_n$ for all n, what can you say about $\sum a_n$? Why? $\sum a_n$ converges.
- 2. Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms and $\sum b_n$ is divergent.
 - (a) If $a_n > b_n$ for all n, what can you say about $\sum a_n$? Why? $\sum a_n$ diverges.(b) If $a_n < b_n$ for all n, what can you say about $\sum a_n$? Why?Can not be determined
- 3. Determine whether the series converges or diverges.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^3 + 8}$$
Convergent. DCT with $\sum \frac{1}{n^3}$
(b)
$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n-1}}$$
Divergent. DCT with $\sum \frac{1}{n^{1/2}}$
(c)
$$\sum_{n=1}^{\infty} \frac{6^n}{5^n - 1}$$
Divergent. DCT with $\sum \frac{9^n}{5^n}$
(d)
$$\sum_{n=1}^{\infty} \frac{9^n}{3 + 10^n}$$
Convergent. DCT with $\sum \frac{1}{9^n} = \sum \left(\frac{9}{10}\right)^n$
(e)
$$\sum_{k=1}^{\infty} \frac{\ln(k)}{k}$$
Divergent. DCT with $\sum \frac{1}{k}$ or IT
(f)
$$\sum_{n=1}^{\infty} \frac{n + 1}{n^3 + n}$$
Convergent. DCT with $\sum \frac{1}{n^2}$
(g)
$$\sum_{n=2}^{\infty} \frac{n + 1}{n\sqrt{n^2 - 1}}$$
Convergent. LCT with $\sum \frac{1}{n^2}$
(i)
$$\sum_{n=1}^{\infty} \frac{n + 3^n}{n + 2^n}$$
Divergent. LCT with $\sum \frac{1}{n^2}$
(j)
$$\sum_{n=1}^{\infty} \frac{e^n + 1}{n^n}$$
Divergent. LCT with $\sum \frac{1}{n^2}$
(k)
$$\sum_{n=1}^{\infty} \frac{1}{n^n}$$
Converges. DCT with $\sum \frac{1}{n^2}$
(l)
$$\sum_{n=1}^{\infty} \frac{5 + 2n}{(1 + n^2)^2}$$
Coverges. LCT with $\sum \frac{1}{n^3}$