Directions: Show all work on a separate sheet of paper for full credit.

- 1. Use the Integral Test to determine whether the series is convergent or divergent.
 - a) $\sum_{n=0.3}^{\infty} n^{-0.3}$
 - b) $\sum_{n=1}^{\infty} n^2 e^{-n^3}$
- 2. Determine whether the series is convergent or divergent.
 - (a) $\sum_{n=1}^{\infty} \frac{1}{n^{\sqrt{2}}}$
 - (b) $\sum_{n=1}^{\infty} n^{-0.9999}$
 - (c) $\frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \frac{1}{11} + \frac{1}{13} + \dots$
 - (d) $1 + \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} + \frac{1}{4\sqrt{4}} + \frac{1}{5\sqrt{5}} + \dots$
 - (e) $\sum_{n=1}^{\infty} \frac{\sqrt{n} + 4}{n^2}$
 - (f) $\sum_{n=1}^{\infty} \frac{1}{n \ln(n)}$
 - (g) $\sum_{n=1}^{\infty} \frac{\ln(n)}{n^2}$
 - (h) $\sum_{n=1}^{\infty} \frac{1}{n^2 + 4}$