This study guide is in no way exhaustive. As stated in class, any type of question from class, quizzes, exams, and homeworks are fair game.

1. Some Algebra Review

(a) Logarithm Properties

- i. $y = \log_b x$ is equivalent to $x = b^y$.
- ii. $\log_b b = 1$
- iii. $\log_b 1 = 0, \ln 1 = 0$
- iv. $\log_b(b^r) = r$, $\ln(e^r) = r$
- v. $\log_b(x^r) = r \log_b(x), \ln(x^r) = r \ln(x)$
- vi. $\log_b(MN) = \log_b(M) + \log_b(N)$
- vii. $\log_b\left(\frac{M}{N}\right) = \log_b(M) \log_b(N)$
- viii. The domain of $\log_b(u)$ is u > 0
- ix. All the rules above hold for $\ln x$. Remember that $\ln x = \log_e x$
- x. Change of Base

$$\log_a(M) = \frac{\ln M}{\ln a} = \frac{\log_b M}{\log_b a}$$

This is useful if you're asked to find the derivative of $y = \log_5(x+1)$

(b) Exponential Properties

i. $a^{n}a^{m} = a^{n+m}$ ii. $(a^{n})^{m} = a^{nm}$ iii. $(ab)^{n} = a^{n}b^{n}$ iv. $\frac{a^{n}}{a^{m}} = a^{n-m} = \frac{1}{a^{m-n}}$ vi. $\frac{1}{a^{-n}} = a^{n}$ vii. $a^{m/n} = (a^{m})^{1/n} = (a^{1/n})^{m}$

(c) **Properties of Radicals**

i.
$$\sqrt[n]{a} = a^{1/n}$$

ii. $\sqrt[n]{a^m} = a^{m/n}$

2. Limits

(a) Notation

i. General Limit Notation: $\lim_{x \to a} f(x) = L$ ii. Left Hand Limit: $\lim_{x \to a^-} f(x) = L$ iii. Right Hand Limit: $\lim_{x \to a^+} f(x) = L$ iv. If $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = L$ then $\lim_{x \to a} f(x) = L$ (b) Limits at $\pm \infty$. Assume all polynomials are in descending order.

(c) Evaluation Techniques

i. If f(x) is continuous, then $\lim_{x \to a} f(x) = f(a)$

$$\lim_{x \to 3} \sqrt{x^2 + 4} = \sqrt{3^2 + 4} = \sqrt{13}$$

ii. Factor and Cancel

If you evaluate a rational function and get $\frac{0}{0}$, then try to factor.

$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x + 3)}{x - 3} = \lim_{x \to 3} \frac{(x + 3)}{1} = 6$$

iii. Rationalizing Numerators / Denominators

Try this technique if you have radicals. Multiply top and bottom by the conjugate.

$$\lim_{x \to 4} \frac{\sqrt{x} - 4}{x - 16} = \lim_{x \to 4} \frac{\sqrt{x} - 4}{x - 16} \cdot \frac{\sqrt{x} + 4}{\sqrt{x} + 4} = \lim_{x \to 4} \frac{x - 16}{(x - 16)(\sqrt{x} + 4)} = \lim_{x \to 4} \frac{1}{\sqrt{x} + 4}$$

iv. Combine by Using Common Denominators

Try this when you need to combine fractions within fractions

$$\lim_{x \to a} \frac{\frac{2}{x+4} - \frac{2}{a+4}}{x-a} = \lim_{x \to a} \frac{\frac{2}{x+4} - \frac{2}{a+4}}{x-a} \cdot \frac{(x+4)(a+4)}{(x+4)(a+4)} = \lim_{x \to a} \frac{2(a+4) - 2(x+4)}{(x-a)(x+4)(a+4)}$$
$$= \lim_{x \to a} \frac{2a - 2x}{(x-a)(x+4)(a+4)} = \lim_{x \to a} \frac{-2(x-a)}{(x-a)(x+4)(a+4)} = \lim_{x \to a} \frac{-2}{(x+4)(a+4)} = \frac{-2}{(a+4)(a+4)}$$

v. L'Hospital's Rule and limits can be found later in this guide.

- (d) Piecewise Functions Know how to graph and evaluate Piecewise Functions. These are good ones to test your understanding of left-hand, right-hand, and general limits. They are also used to test your understanding of continuity.
- (e) **Definition of Continuity**

=

A function f is continuous at x = a if the following three conditions are satisfied:

- i. f(a) must exist
- ii. $\lim_{x \to a} f(x)$ must exist
- iii. $\lim_{x \to a} f(x) = f(a)$

3. Derivatives

(a) Limit Definition of a Derivative

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 or $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$

(b) Tangent Lines

When asked to find the equation of a tangent line on f at x = a, you need two things: A point and a slope.

- i. You're usually given the x value. If they don't tell you the y value, you must plug the x value into f(x) to get the y value. Now you have a point (a, f(a))
- ii. To find the slope m, you find m = f'(a).
- iii. The equation of the tangent line is y f(a) = f'(a)(x a). You may need to write this in slope-intercept form.
- (c) **Derivative Formulas**

i.
$$\frac{d}{dx}(c) = 0$$
xv.
$$\frac{d}{dx}(\ln(f(x))) = \frac{1}{f(x)} \cdot f'(x)$$
ii.
$$\frac{d}{dx}(f \pm g) = f' \pm g'$$
xvi.
$$\frac{d}{dx}(\sin x) = \cos x$$
iii.
$$\frac{d}{dx}(x) = 1$$
xvii.
$$\frac{d}{dx}(\cos x) = -\sin x$$
iv.
$$\frac{d}{dx}(kx) = k$$
xviii.
$$\frac{d}{dx}(\cos x) = -\sin x$$
iv.
$$\frac{d}{dx}(kx) = k$$
xviii.
$$\frac{d}{dx}(\tan x) = \sec^2 x$$
v. Power Rule:
$$\frac{d}{dx}(x^n) = nx^{n-1}$$
xi.
$$\frac{d}{dx}(\operatorname{csc} x) = \operatorname{sec} x \tan x$$
vi.
$$\frac{d}{dx}([f(x)]^n) = n[f(x)]^{n-1} \cdot f'(x)$$
xx.
$$\frac{d}{dx}(\operatorname{csc} x) = -\operatorname{csc} x \cot x$$
vii. Product Rule:
$$(f g)' = f'g + fg'$$
xxi.
$$\frac{d}{dx}(\cot x) = -\operatorname{csc}^2 x$$
viii. Quotient Rule:
$$(f g)' = f'g - fg'$$
xxii.
$$\frac{d}{dx}(\cot x) = -\operatorname{csc}^2 x$$
viii. Quotient Rule:
$$(f(g(x)))' = f'(g(x)) \cdot g'(x)$$
x.
$$\frac{d}{dx}(a^x) = a^x \ln a$$
xxii.
$$\frac{d}{dx}(\cos^{-1} x) = \frac{1}{\sqrt{1 - x^2}}$$
xii.
$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$
xxv.
$$\frac{d}{dx}(\operatorname{cot}^{-1} x) = \frac{1}{1 + x^2}$$
xxv.
$$\frac{d}{dx}(\operatorname{cot}^{-1} x) = \frac{1}{x\sqrt{x^2 - 1}}$$
xiv.
$$\frac{d}{dx}(e^{f(x)}) = f'(x) \cdot e^{f(x)}$$
xxvii.
$$\frac{d}{dx}(\operatorname{csc}^{-1} x) = \frac{1}{x\sqrt{x^2 - 1}}$$

REMEMBER: all of these derivatives have a version for the chain rule. For example:

$$\frac{d}{dx}\left(\tan^{-1}(e^x)\right) = \frac{1}{1 + (e^{2x})^2} \cdot 2e^{2x}$$

(d) Critical Points

x = c is a value of f(x) if f'(c) = 0 or f'(c) does not exist.

(e) Increasing / Decreasing

i. If f'(x) > 0 on an interval I, then f(x) is ii. If f'(x) < 0 on an interval I, then f(x) is increasing. decreasing.

(f) Concave Up / Concave Down

i. If f''(x) > 0 on an interval I, then f(x) is ii. If f''(x) < 0 on an interval I, then f(x) is concave up.

(g) Inflection Points

x = c is an inflection point of f if

i. The point at x = c must exist. ii. Concavity changes at x = c

(h) First Derivative Test to find Local (Relative) Extrema

- i. Find all critical value of f(x) where f'(c) = 0
- ii. Local Max at x = c if f'(x) changes from (+) to (-) at x = c.
- iii. Local Min at x = c if f'(x) changes from (-) to (+) at x = c.
- iv. If f'(x) does not change signs, it's still an important point to plot. It may be a place where the slope is 0, a corner, an asymptote, a vertical tangent line, etc.
- v. Make sure you write your relative max and mins as points (c, f(c))

(i) Second Derivative Test to find Local (Relative) Extrema

- i. Find all critical value of f(x) where f'(c) = 0
- ii. Local Max at x = c if f''(c) < 0
- iii. Local Min at x = c if f''(x) > 0

iv. Make sure you write your relative max and mins as points (c, f(c))

(j) Absolute Extrema

- i. (c, f(c)) is an absolute maximum of f(x) if $f(c) \ge f(x)$ for all x in the domain.
- ii. (c, f(c)) is an absolute minimum of f(x) if $f(c) \leq f(x)$ for all x in the domain.

(k) Finding Absolute Extrema of a continuous f(x) over [a, b]

- i. Find all critical values of f(x) on [a, b].
- ii. Evaluate f(x) at all critical values.
- iii. Evaluate f(x) at the endpoints, f(a) and f(b).

iv. The absolute max is the largest function value and the absolute min is the smallest function value.

(l) L'Hospitals Rule

i. If $\lim_{x \to a} f(x) = 0$ and $\lim_{x \to a} g(x) = 0$, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} , g'(x) \neq 0$$

ii. If $\lim_{x \to a} f(x) = \pm \infty$ and $\lim_{x \to a} g(x) = \pm \infty$, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

iii. Indeterminate Form of Type $0 \cdot \infty$

Given $\lim_{x \to a} f(x)g(x)$, you do the following to put it in the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$

- A. Rewrite f(x)g(x) as $\frac{f(x)}{1/g(x)}$ B. Rewrite f(x)g(x) as $\frac{g(x)}{1/f(x)}$
- iv. Indeterminate Form of 0^0 , ∞^0 , or 1^∞

Given $\lim_{x \to a} f(x)^{g(x)}$, rewrite the limit as

$$\lim_{x \to a} e^{g(x) \ln(f(x))}$$

then take the limit of the exponent

$$\lim_{x \to a} g(x) \ln(f(x))$$

This should put the limit in the Indeterminate Form of Type $0 \cdot \infty$

v. Indeterminate Form of $\infty - \infty$

The first thing to try to combine the functions into **One Big Fraction**. Then try L'Hospitals Rule. Another option would be to factor and turn it into a product of two functions.

(m) Inverse Derivative Theorem

Let f(x) be a one-to-one function.

$$(f^{-1}(b))' = \frac{1}{f'(f^{-1}(b))}$$

- 4. Summary of Curve Sketching Always start by noting the domain of f(x)
 - (a) x and y intercepts
 - i. x-intercepts occur when f(x) = 0
 - ii. y-intercept occurs when x = 0
 - (b) Find any vertical, horizontal asymptotes, or slant asymptotes.
 - i. Vertical Asymptote: Find all x-values where $\lim_{x \to a} f(x) = \pm \infty$. Usually when the denominator is 0 and the numerator is not 0. Rational function MUST be reduced.
 - ii. Horizontal Aymptotes: Find $\lim_{x\to\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$. There are shortcuts based on the degree of the numerator and denominator.
 - iii. Slant Asymptotes: Occurs when the degree of the numerator is one larger than the denominator. You must do long division to determine the asymptotes.
 - (c) Find f'(x)
 - i. Find the critical values, all x-values where f'(x) = 0 or when f'(x) does not exist.
 - ii. Plot the critical values on a number line.
 - iii. Find increasing / decreasing intervals using number line
 - iv. Use **The First Derivative Test** to find local maximums / minimums (if any exist). Remember to write them as points.
 - A. Local Max at x = c if f'(x) changes from (+) to (-) at x = c.
 - B. Local Min at x = c if f'(x) changes from (-) to (+) at x = c.
 - C. Note: If f'(x) does not change signs, it's still an important point. It may be a place where the slope is 0, a corner, an asymptote, a vertical tangent line, etc.
 - (d) Find f''(x)
 - i. Find all x-values where f''(x) = 0 or when f''(x) does not exist.
 - ii. Plot these x-values on a number line.
 - iii. Find intervals of concavity using the number line
 - iv. Find points of inflection
 - A. Must be a place where concavity changes
 - B. The point must exist (i.e, can't be an asymptote, discontinuity)
 - (e) Sketch
 - i. Draw every asymptote
 - ii. Plot all intercepts
 - iii. Plot all critical points (even if they are not relative extrema). They were critical points for a reason.
 - iv. Plot all inflection points.
 - v. Connect points on the graph by using information about increasing/decreasing and its concavity.

5. Integrals

- (a) **Definitions**
 - i. Antideriative: An antiderivative of f(x) is a function F(x), where F'(x) = f(x).
 - ii. General Antiderivative: The general antiderivative of f(x) is F(x) + C, where F'(x) =f(x). Also known as the **Indefinite Integral**

$$\int f(x) \, dx = F(x) + C$$

iii. Definite Integral:

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a)$$

(b) Approximation Integration Techniques

Given the integral $\int_{a}^{b} f(x) dx$ and n (for Simpson's Rule n must be even), with $\Delta x = \frac{b-a}{n}$ and $x_i = a + i\Delta x$, then

$$\begin{aligned} \mathbf{Left-hand} & \int_{a}^{b} f(x) \ dx = \Delta x \left[f(x_{0}) + f(x_{1}) + f(x_{2}) + f(x_{3}) + \ldots + f(x_{n-1}) \right] \\ \mathbf{Right-hand} & \int_{a}^{b} f(x) \ dx = \Delta x \left[f(x_{1}) + f(x_{2}) + f(x_{3}) + f(x_{4}) + \ldots + f(x_{n}) \right] \\ \mathbf{Midpoint} & \int_{a}^{b} f(x) \ dx = \Delta x \left[f(x_{1}^{*}) + f(x_{2}^{*}) + f(x_{3}^{*}) + f(x_{4}^{*}) + \ldots + f(x_{n}^{*}) \right], \text{ where } x_{i}^{*} \text{ is midpoint in } \left[x_{i-1}, x_{i} \right] \\ \mathbf{Trapezoid} & \int_{a}^{b} f(x) \ dx = \frac{\Delta x}{2} \left[f(x_{0}) + 2f(x_{1}) + 2f(x_{2}) + 2f(x_{3}) + \ldots + 2f(x_{n-2}) + 2f(x_{n-1}) + f(x_{n}) \right] \\ \mathbf{Simpson's} & \int_{a}^{b} f(x) \ dx = \frac{\Delta x}{3} \left[f(x_{0}) + 4f(x_{1}) + 2f(x_{2}) + 4f(x_{3}) + \ldots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_{n}) \right] \end{aligned}$$

(c) Common Integrals

i.
$$\int k \, dx = kx + C$$
ii.
$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1$$
iii.
$$\int \frac{1}{x} \, dx = \ln |x| + C$$
iv.
$$\int \frac{1}{kx+b} \, dx = \frac{1}{k} \ln |kx+b| + C$$
iv.
$$\int \frac{1}{kx+b} \, dx = \frac{1}{k} \ln |kx+b| + C$$
iv.
$$\int e^x \, dx = e^x + C$$
iv.
$$\int e^x \, dx = e^x + C$$
iv.
$$\int e^{kx} \, dx = \frac{1}{k} e^{kx} + C$$
iv.
$$\int \csc^2 x \, dx = -\cot x + C$$
iv.
$$\int e^{kx} \, dx = \frac{1}{k} e^{kx+b} + C$$
iv.
$$\int \sec x \tan x \, dx = \sec x + C$$
iv.
$$\int e^{kx+b} \, dx = \frac{1}{k} e^{kx+b} + C$$
iv.
$$\int \sec x \cot x \, dx = -\csc x + C$$
iv.
$$\int a^x \, dx = \frac{a^x}{\ln a} + C$$
iv.
$$\int \tan x \, dx = \ln |\sec x| + C$$
iv.
$$\int a^{kx} \, dx = \frac{1}{k \ln a} a^{kx} + C$$
iv.
$$\int \cot x \, dx = \ln |\sin x| + C$$
iv.
$$\int a^{kx+b} \, dx = \frac{1}{k \ln a} a^{kx+b} + C$$
iv.
$$\int \csc x \, dx = \ln |\sin x| + C$$
iv.
$$\int a^{kx+b} \, dx = \frac{1}{k \ln a} a^{kx+b} + C$$
iv.
$$\int \csc x \, dx = \ln |\sin x| + C$$
iv.
$$\int \csc x \, dx = \ln |\sin x| + C$$
iv.
$$\int \csc x \, dx = \ln |\sin x| + C$$
iv.
$$\int \csc x \, dx = \ln |\sin x| + C$$
iv.
$$\int \csc x \, dx = \ln |\sin x| + C$$
iv.
$$\int \csc x \, dx = \ln |\sin x| + C$$
iv.
$$\int \csc x \, dx = \ln |\sin x| + C$$
iv.
$$\int \csc x \, dx = \ln |\sin x| + C$$
iv.
$$\int \csc x \, dx = \ln |\sin x| + C$$
iv.
$$\int \csc x \, dx = \ln |\cos x - \cot x| + C$$

$$\begin{aligned} \text{xxi.} \quad \int \sec x \, dx &= \ln |\sec x + \tan x| + C \\ \text{xxii.} \quad \int \frac{1}{a^2 - x^2} \, dx &= \sin^{-1} \left(\frac{x}{a}\right) + C \\ \text{xxiii.} \quad \int \frac{1}{\sqrt{a^2 - x^2}} \, dx &= \sin^{-1} \left(\frac{x}{a}\right) + C \\ \text{xxiii.} \quad \int \frac{1}{a^2 + x^2} \, dx &= \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \\ \text{xxiii.} \quad \int \frac{1}{a^2 + x^2} \, dx &= \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \\ \text{xxiii.} \quad \int \frac{1}{a^2 + x^2} \, dx &= \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \\ \text{xxiii.} \quad \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \\ \text{xxiii.} \quad \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \\ \text{xxiii.} \quad \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \\ \text{xxiii.} \quad \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \\ \text{xxiii.} \quad \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \\ \text{xxiii.} \quad \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \\ \text{xxiii.} \quad \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \\ \text{xxiii.} \quad \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \\ \text{xxiii.} \quad \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \\ \text{xxiii.} \quad \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \\ \text{xxiii.} \quad \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \\ \text{xxiii.} \quad \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \\ \text{xxiii.} \quad \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \\ \text{xxiii.} \quad \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \\ \text{xxiiii.} \quad \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \\ \text{xxiiii.} \quad \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \\ \text{xxiiii.} \quad \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \\ \text{xxiiii.} \quad \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \\ \text{xxiiii.} \quad \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \\ \text{xxiiii} \quad \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \\ \text{xxiii} \quad \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \\ \text{xxiii} \quad \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \\ \text{xxiii} \quad \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C \\ \text{xxiii} \quad \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{a} \tan$$

(d) Every integral must be written into the proper form in order to use the formulas. For example,

$$\int \sqrt{x} \, dx = \int x^{1/2} \, dx$$
$$\int \frac{3}{5x^4} \, dx = \int \frac{3}{5} x^{-4} \, dx$$
$$\int \frac{8}{\sqrt[5]{x^9}} \, dx = \int 8x^{-9/5} \, dx$$

(e) Finding Area under or between Curves

6. Solids of Revolution

(a) Disk Method - in terms of \boldsymbol{x}

(b) Washer Method - in terms of x

$$V = \int_a^b \pi R(x)^2 - \pi r(x)^2 dx$$

(c) Disk Method - in terms of y

$$V = \int_{c}^{d} \pi R(y)^{2} \, dy$$

(d) Washer Method - in terms of \boldsymbol{y}

$$V = \int_c^d \pi R(y)^2 - \pi r(y)^2 \, dy$$

You may have to rotate around an axis other than the x or y axis. If you do, you need to adjust the radius. For example,

7. Arc Length

- 8. Area of a Surface of Revolution
 - (a) Rotated around the x-axis

The first integral is in terms of x. That means the y in front of the square root should be in terms of x. For example, $y = x^2 + 2$. You use $x^2 + 2$ instead of y.

(b) Rotated around the y-axis.

The formula doesn't change much.

$$SA = \int_{a}^{b} 2\pi x \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx \qquad \qquad SA = \int_{c}^{d} 2\pi x \sqrt{1 + \left(\frac{dx}{dy}\right)^{2}} dy$$

The second integral is in terms of y. That means the x in front of the square root should be in terms of y. For example, if $y = x^2$, solve for x ($x = \sqrt{y}$) and use \sqrt{y} instead of x.

9. Integration Techniques

(a) *u* Substitution

Given
$$\int_{a}^{b} f(g(x))g'(x) dx$$
,
i. Let $u = g(x)$

- ii. Then du = g'(x) dx
- iii. If there are bounds, you must change them using u = g(b) and u = g(a)

$$\int_{a}^{b} f(g(x))g'(x) \, dx = \int_{g(a)}^{g(b)} f(u) \, du$$

(b) Integration By Parts

$$\int u \, dv = uv - \int v \, du$$

Example: $\int x^2 e^{-x} dx$

$$u = x^{2} \qquad dv = e^{-x} dx$$
$$du = 2x dx \qquad v = -e^{-x}$$
$$\int x^{2}e^{-x} dx = -x^{2}e^{-x} - \int -2xe^{-x} dx$$

You may have to do integration by parts more than once. When trying to figure out what to choose for u, you can follow this guide: LIATE

 $\mathbf{L} \ \operatorname{Logs}$

 ${\bf I}\,$ Inverse Trig Functions

A Algebraic (radicals, rational functions, polynomials)

- **T** Trig Functions $(\sin x, \cos x)$
- ${\bf E}$ Exponential Functions

(c) **Products of Trig Functions**

- i. $\int \sin^n x \cos^m x \, dx$
 - A. *m* is odd (power of $\cos x$ is odd). Factor out one $\cos x$ and place it in front of dx. Rewrite all remaining $\cos x$ as $\sin x$ by using $\cos^2 x = 1 \sin^2 x$. Then let $u = \sin x$ and $du = \cos x \, dx$
 - B. *n* is odd (power of sin *x* is odd). Factor out one sin *x* and place it in front of *dx*. Rewrite all remaining sin *x* as $\cos x$ by using $\sin^2 x = 1 \cos^2 x$. Then let $u = \cos x$ and $du = -\sin x \, dx$
 - C. If n and m are both odd, you can choose either of the previous methods.
 - D. If n and m are even, use the following trig identities

$$\sin^2 x = \frac{1}{2}(1 - \cos(2x))$$
$$\cos^2 x = \frac{1}{2}(1 + \cos(2x))$$
$$\sin(2x) = 2\cos x \sin x$$

ii. $\int \tan^n x \sec^m x \, dx$

- A. m is even (power of sec x is even). Factor out one sec² x and place it in front of dx. Rewrite all remaining sec x as $\tan x$ by using sec² $x = 1 + \tan^2 x$. Then let $u = \tan x$ and $du = \sec^2 x \, dx$
- B. *n* is odd (power of $\tan x$ is odd). Factor out one $\sec x \tan x$ and place it in front of dx. Rewrite all remaining $\tan x$ as $\sec x$ by using $\tan^2 x = \sec^2 x 1$. Then let $u = \sec x$ and $du = \sec x \tan x \, dx$
- C. If n odd and m is even, you can use either of the previous methods.
- D. If n is even and m is odd, the previous methods will not work. You can try to simplify or rewrite the integrals. You may try other methods.

(d) Partial Fractions

Use this method when you are integrating $\int \frac{p(x)}{q(x)} dx$, the degree of p(x) must be smaller than the degree of q(x). Factor the denominator q(x) into a product of linear and quadratic factors. There are four scenarios.

Unique Linear Factors: If your denominator has unique linear factors

(

$$\frac{x}{2x-1(x-3)} = \frac{A}{2x-1} + \frac{B}{x-3}$$

To solve for A and B, multiply through by the common denominator to get

$$x = A(x - 3) + B(2x - 1)$$

You can find A by plugging in $x = \frac{1}{2}$. Find B by plugging in x = 3.

Repeated Linear Factors: Every power of the linear factor gets its own fraction (up to the

highest power).

$$\frac{x}{(x-3)(3x+4)^3} = \frac{A}{x-3} + \frac{B}{3x+4} + \frac{C}{(3x+4)^2} + \frac{D}{(3x+4)^3}$$

Unique Quadratic Factor:

$$\frac{3x-1}{(x+4)(x^2+9)} = \frac{A}{x+4} + \frac{Bx+C}{x^2+9}$$

To solve or A, B, and C, multiply through by the common denominator to get

 $3x - 1 = A(x^{2} + 9) + (Bx + C)(x + 4)$

Repeated Quadratic Factor: Every power of the quadratic factor gets its own fraction (up

to the highest power).

$$\frac{2x}{(3x+4)(x^2+9)^3} = \frac{A}{3x+4} + \frac{Bx+C}{x^2+9} + \frac{Dx+E}{(x^2+9)^2} + \frac{Fx+G}{(x^2+9)^3}$$

(e) **Trig Substitution**

If you see	Substitute	Uses the following Identity
$\sqrt{a^2 - x^2}$	$x = a\sin(\theta)$	$1 - \sin^2(\theta) = \cos^2(\theta)$
$\sqrt{a^2 + x^2}$	$x = a \tan(\theta)$	$1 + \tan^2(\theta) = \sec^2(\theta)$
$\sqrt{x^2 - a^2}$	$x = a \sec(\theta)$	$\sec^2(\theta) - 1 = \tan^2(\theta)$
Example: $\int x^3$	$dx \text{ Lot } x = 4 \sin \theta dx = 4 \cos \theta dt$	θ So $m^3 - 64 \sin^3 \theta$

Example: $\int \frac{x}{\sqrt{16-x^2}} dx$ Let $x = 4\sin\theta$, $dx = 4\cos\theta d\theta$. So $x^3 = 64\sin^3\theta$

$$\int \frac{x^3}{\sqrt{16 - x^2}} \, dx = \int \frac{64\sin^3\theta}{\sqrt{16 - 16\sin^2\theta}} \cdot 4\cos\theta \, d\theta = \int \frac{64\sin^3\theta \cdot 4\cos\theta \, d\theta}{4\cos\theta} = \int \sin^3\theta \, d\theta$$

Now you have an integral containing powers of trig functions. You can refer to that method to solve the rest of this integral.

$$\int \sin^3 d\theta = \frac{\cos^3 \theta}{3} - \cos \theta + C$$

To get back to x, we need to use a right triangle with the original substitution $x = 4 \sin x$.

If $\cos \theta = \frac{\sqrt{16 - x^2}}{4}$, then

$$\int \frac{x^3}{\sqrt{16 - x^2}} \, dx = \frac{\left(\frac{\sqrt{16 - x^2}}{4}\right)^3}{3} - \frac{\sqrt{16 - x^2}}{4} + C$$

10. Improper Integrals

(a) Infinity as a bound

i.
$$\int_{a}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{a}^{t} f(x) dx$$

ii.
$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{c} f(x) dx + \int_{c}^{\infty} f(x) dx$$

ii.
$$\int_{-\infty}^{b} f(x) dx = \lim_{t \to -\infty} \int_{t}^{b} f(x) dx$$

(b) Discontinuity at a bound

i. Discont. at
$$a: \int_{a}^{b} f(x) dx = \lim_{t \to a^{+}} \int_{t}^{b} f(x) dx$$

ii. Discont. at $b: \int_{a}^{b} f(x) dx = \lim_{t \to b^{-}} \int_{a}^{t} f(x) dx$
iii. Discont. at $c, a < c < b: \int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$

11. Sequences and Series

(a) **Sequences:** A list of numbers in a definite order, $\{a_0, a_1, a_2, a_3, a_4, ...\}$

i. Sequeeze Theorem If $a_n < b_n < c_n$, for iii. Geometric Sequence $\lim_{n \to \infty} r^n = \begin{cases} 0, & \text{if } -1 < r < 1 \\ 1, & \text{if } r = 1 \\ \text{Diverge closed} \end{cases}$ $n \geq N$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$ Diverge, elsewhere

iv. A typical heirarchy of sequences

If
$$\lim_{n \to \infty} |a_n| = 0$$
, then $\lim_{n \to \infty} a_n = 0$ $C < \ln n < n^p < a^n < n! < n^n$

(b) Series

i. Definition

ii. Useful Theorem

iii. Geometric Series: If -1 < r < 1, then

 ∞

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + a_4 + \dots$$

ii. Partial Sums

$$S_N = \sum_{n=1}^N a_n = a_1 + a_2 + a_3 + \dots + a_N$$

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$$
$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$$
$$\sum_{n=k}^{\infty} ar^{n-k} = \frac{a}{1-r}$$

12. Summary of Convergence Tests

Test	Theorem	Comments	
Divergence	Given the series $\sum a_n$, if $\lim_{n \to \infty} a_n \neq 0$, the series	Can only be used to test for divergence. It	
Test	diverges.	can never be used to test for convergence.	
P-Test	The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if $p > 1$. If $p \le 1$,	You're normally using this series as a com-	
	then $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges.	parison for Direct or Limit Comparison Tests	
Integral	Given the series $\sum a_n$, if you can write $a_n = f(n)$	The function f should be easily integrated	
Test	and $\int_{-\infty}^{\infty} f(n) dn$ converges, then so does $\sum a_n$.	using one of our integration techniques	
	If $\int_{-\infty}^{\infty} f(n) dn$ diverges, so does $\sum a_n$	from previous chapters. This test should	
	$\int_{1} \int_{1} \int_{1$	not be used when a_n has factorials.	
Direct Com-	Let $\sum a_n$ and $\sum b_n$ be series such that $0 \le a_n \le$	You need to be able to anticipate the con-	
parison Test	b_n . If $\sum b_n$ converges, so does $\sum a_n$. If $\sum a_n$	vergence. This allows you to choose an ap-	
	diverges, so does $\sum b_n$.	propriate comparison. You should know	
		the convergence of one of the series.	
Limit Com-	Let $\sum a_n$ and $\sum b_n$ be series where $a_n \ge 0$ and	Can be easier than Direct Comparison	
parison Test	$b_n \ge 0$. If $\lim_{n\to\infty} \frac{a_n}{b_n} = L$, where L is a positive	Test since getting the required inequali-	
	finite number, then either both series converge or	ties to work can be time consuming.	
	they both diverge.		
Alternating	Given the series $\sum (-1)^n b_n$, if $b_n > 0$, decreasing,	You have to check for absolute or	
Series Test	and $b_n \to 0$, then the series converges.	conditional convergence by testing	
		$\sum (-1)^n b_n = \sum b_n.$	
Ratio Test	Let $\sum a_n$ be a series. Let $L = \lim_{n \to \infty} \left \frac{a_{n+1}}{a} \right $.	Use this test when you have exponential	
	If $L < 1$, the series converges absolutely.	functions or factorials.	
	If $L > 1$, the series diverges.		
	If $L = 1$, the test is inconclusive.		
Root Test	Let $\sum a_n$ be a series. Let $L = \lim_{n \to \infty} \sqrt[n]{ a_n }$.	Use this test when $a_n = (b_n)^n$.	
	If $L < 1$, the series converges absolutely.		
	If $L > 1$, the series diverges.		
	If $L = 1$, the test is inconclusive.		
Absolute	If the series $\sum a_n$ converges absolutely, then it	If $\sum a_n $ converges, when $\sum a_n$ is abso-	
Conver-	converges.	lutely convergent.	
gence			
Conditional	If the series $\sum a_n$ converges but $\sum a_n $ diverges,	You're usually checking if $\sum a_n $ con-	
Conver-	then the series $\sum a_n$ converges conditionally.	verges because $\sum a_n$ converged by AST	
gence			

13. Estimating a Series

(a) **Remainder Estimate for Integral Test:** If $\sum_{n=1}^{\infty} a_n$ is convergent, f(n) is continuous, positive, and decreasing, then

$$R_N \le \int_N^\infty f(n) \ dn$$

If you're asked to estimate $\sum_{n=1}^{N} a_n$ to 4 decimals (or have an error less than 0.0001), then solve integrate and solve for N.

$$\int_N^\infty f(n)\;dn < 0.0001$$

(b) Alternating Series Estimation Theorem: Given a convergent alternating series $\sum_{n=1}^{n} a_n = \sum_{n=1}^{n} (-1)^n b_n$, then

$$|R_N| \le b_{N+1}$$

14. Power Series

(a) A power series centered at 0

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots$$

(b) A power series centered at a

$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + c_3 (x-a)^3 + \dots$$

- (c) Radius and Interval of Convergence: Perform the Ratio Test or Root Test (usually Ratio Test) For a given a power series $\sum_{\substack{n=1\\\text{ities:}}}^{\infty} c_n (x-a)^n$, there are only three possibil
 - i. The series converges only when x = a. The interval of convergence is $\{a\}$ and

the radius of convergence is R = 0. This happens when the Ratio Test gives L > 1.

- ii. The series converges for all x. The in-... terval of convergence is $(-\infty, \infty)$ and the radius of convergence is $R = \infty$. This happens when the Ratio Test gives L = 0.
- iii. The series converges on an interval (a R, a + R). This happens when the Ratio Test gives K|x - a|, where you need to solve K|x - a| < 1.

15. Writing Functions as a Power Series

Given $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + c_3 (x-a)^3 + \dots$ with a radius of convergence R > 0, then

$$f'(x) = \sum_{n=1}^{\infty} nc_n (x-a)^{n-1} = 1c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3$$
$$\int f(x) \, dx = \sum_{n=0}^{\infty} \frac{c_n (x-a)^{n+1}}{n+1} = c_0(x-a) + \frac{1}{2}c_1(x-a)^2 + \frac{1}{3}c_2(x-a)^3 + \frac{1}{4}c_3(x-a)^4 + \dots$$

You use this technique if you're asked to find a power series of a function like $\frac{1}{(1+x)^2}$, $\ln(1+x)$, $\tan^{-1}x$, etc. Your goal is to differentiate or integrate your function f(x) until it's in the proper form

$$\frac{A}{1-u}$$

A and u can be anything. Once it's in the proper form, you can write it as a power series.

$$\frac{A}{1-u} = \sum_{n=0} A \cdot (u)^n$$

- (a) If you had to integrate to get the proper form, then differentiate the power series to get back to the original f(x).
- (b) If you differentiated to get the proper form, then integrate the power series to get back to the original f(x).

16. Taylor Series / Macluarin Series

(a) Taylor Series is centered at a

(b) Maclaurin Series is centered at 0

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \dots \quad f(x) = \sum_{n=0}^{\infty} c_n (x)^n = c_0 + c_1 x + c_2 x^2 + \dots$$

with $c_n = \frac{f^n(a)}{n!}$ with $c_n = \frac{f^n(a)}{n!}$

It may helfpul to determine the coefficients c_0, c_1, c_2, \dots by using the table

-			
n	$f^n(x)$	$f^n(a)$	$c_n = \frac{f^n(a)}{n!}$
0	f(x)	f(a)	$c_0 = \frac{f(a)}{0!}$
1	f'(x)	f'(a)	$c_1 = \frac{f'(a)}{1!}$
2	f''(x)	f''(a)	$c_2 = \frac{f^{\prime\prime}(a)}{2!}$
3	$f^{\prime\prime\prime}(x)$	$f^{\prime\prime\prime}(a)$	$c_3 = \frac{f^{\prime\prime\prime}(a)}{3!}$

(a) If you need to find the Taylor / Maclaurin Series, find a pattern for c_n . Then you write the following series with the appropriate c_n

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$$

(b) If you need to find the *n*-th degree Taylor / Maclaurin Polynomial, then just find the coefficients you need. For example, a 3rd degree Taylor Polynomial requires the coefficients up to c_3 .

$$f(x) = c_0 + c_1(x - a) + c_2(x - a)^2 + c_3(x - a)^3$$