Antidifferentiation

The process of undoing differentiation

The reut of antidifferentiating is called an antiderivative

Example 1.1

Suppose $3x^2$ is the derivative. What is the antiderivative?

1 / 13

Chapter 4 -Integration

4.1 - Antidifferentiation

Theorem 1.2

The antiderivative of f(x) is the set of functions F(x) + C such that

$$\frac{d}{dx}\left[F(x) + C\right] = f(x)$$

The constant C is called the constant of integration.

Indefinite Integral Notation

Determine the indefinite integrals (find the antiderivative) of

- $\int 3x^2 \ dx$
- $\int \frac{1}{x} \, dx$

3 / 13

Chapter 4 -Integration

4.1 - Antidifferentiation

Rules of Antidifferentiation

Theorem 1.4

- **■** Constant Rule:
- 2 Power Rule: $(n \neq -1)$
- 3 Natural Logarithm Rule:
- 4 Exponential Rule (base e)

Find the following indefinite integrals

- $\int 3x^8 \ dx$
- $\int t^{-4} dx$

5 / 13

Chapter 4 -Integration 4.1 - Antidifferentiation

$$\int e^{-3x} dx$$

$$\int \frac{1}{\sqrt{x}} \ dx$$

$$\int \left(2x^4 + 3x^{-3} - 7x^2 + x - 5\right) dx$$

$$\int \frac{x^2 - 7x + 2}{x^2} \ dx$$

7 / 13

Chapter 4 - Integration 4.1 - Antidifferentiation

Find the constant C - Initial Conditions

I Find g such that $g'(x) = \frac{3}{x^2} + 6$, f(2) = 1.

2 Find h such that $h'(x) = 6e^{3x} + 2$, h(0) = 2.

9 / 13

Chapter 4 -Integration 4.1

4.1 - Antidifferentiation

Hints for the word problems

1
$$C(x) =$$

$$R(x) =$$

$$P(x) =$$

4
$$h(t) =$$

A company determines that the marginal cost, C', of producing the x-th unit of a product is given by

$$C'(x) = x^3 - 2x$$

Find the total cost function, C, where C(x) is in dollars and the fixed costs are \$7,000.

11 / 13

Chapter 4 -Integration 4.1 - Antidifferentiation

A rock is thrown directly upward with an initial velocity of 50 ft/sec from an initial height of 10 ft. The velocity of the rock is modeled by

$$v(t) = -32t + 50$$

, where t is in second, v is ft/sec, and t=0 represents the moment the rock is released.

- \blacksquare Determine a distance (height) function h as a function of t.
- 2 Determine the height and velocity of the rock at t = 0, after 2 seconds, and after 4 seconds.